999 resultados para Second corn crop


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHA) are polyesters of bacterial origin that have properties of biodegradable plastics and elastomers. Synthesis of PHA in crop plants would allow the large-scale production and use of these biodegradable and renewable polymers as substitutes for petroleum-derived plastics. Synthesis of a diversity of PHAs in plants, such as Arabidopsis thaliana, rapeseed, corn and cotton, has been demonstrated through the genetic engineering of metabolic pathways in the cytoplasm, plastid and peroxisome. PHA can also be used as a novel tool to study various aspects of plant metabolism, such as the regulation of carbon flux to the fatty acid biosynthetic and degradation pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pre- and postnatal corticosteroids are often used in perinatal medicine to improve pulmonary function in preterm infants. To mimic this clinical situation, newborn rats were treated systemically with dexamethasone (Dex), 0.1-0.01 mg/kg/day on days P1-P4. We hypothesized that postnatal Dex may have an impact on alveolarization by interfering with extracellular matrix proteins and cellular differentiation. Morphological alterations were observed on 3D images obtained by high-resolution synchrotron radiation X-ray tomographic microscopy. Alveolarization was quantified stereologically by estimating the formation of new septa between days P4 and P60. The parenchymal expression of tenascin-C (TNC), smooth muscle actin (SMA), and elastin was measured by immunofluorescence and gene expression for TNC by qRT-PCR. After Dex treatment, the first phase of alveolarization was significantly delayed between days P6 and P10, whereas the second phase was accelerated. Elastin and SMA expressions were delayed by Dex treatment, whereas TNC expression was delayed and prolonged. A short course of neonatal steroids impairs the first phase of alveolarization, most likely by altering the TNC and elastin expression. Due to an overshooting catch-up during the second phase of alveolarization, the differences disappear when the animals reach adulthood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Audit report on the Iowa Corn Promotion Board for the years ended August 31, 2010 and 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decomposing crop residues in no-tillage system can alter soil chemical properties, which may consequently influence the productivity of succession crops. The objective of this study was to evaluate soil chemical properties and soybean, maize and rice yield, grown in the summer, after winter crops in a no-tillage system. The experiment was carried out in Jaboticabal, SP, Brazil (21 ° 15 ' 22 '' S; 48 ° 18 ' 58 '' W) on a Red Latosol (Oxisol), in a completely randomized block design, in strip plots with three replications. The treatments consisted of four summer crop sequences (maize monocrop, soybean monocrop, soybean/maize rotation and rice/bean/cotton rotation) combined with seven winter crops (maize, sunflower, oilseed radish, pearl millet, pigeon pea, grain sorghum and sunn hemp). The experiment began in September 2002. After the winter crops in the 2005/2006 growing season and before the sowing of summer crops in the 2006/2007 season, soil samples were collected in the layers 0-2.5; 2.5-5.0; 5-10; 10-20; and 20-30 cm. Organic matter, pH, P, K+, Ca2+, Mg2+, and H + Al were determined in each soil sample. In the summer soybean/maize rotation and in maize the organic matter contents and P levels were lower, in the layers 0-10 cm and 0-20 cm, respectively. Summer rice/bean/cotton rotation increased soil K levels at 0-10 cm depth when sunn hemp and oilseed radish had previously been grown in the winter, and in the 0-2.5 cm layer for millet. Sunn hemp, millet, oilseed radish and sorghum grown in the winter increased organic matter contents in the soil down to 30 cm. Higher P levels were found at the depths 0-2.5 cm and 0-5 cm, respectively, when sunn hemp and oilseed radish were grown in the winter. Highest grain yields for soybean in monoculture were obtained in succession to winter oilseed radish and sunn hemp and in rotation with maize, after oilseed radish, sunn hemp and millet. Maize yields were highest in succession to winter oilseed radish, millet and pigeon pea. Rice yields were lowest when grown after sorghum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Rio Grande do Sul State (RS), Southern Brazil, aluminum saturation in many areas under no-till system is high and base saturation low in the 0.10-0.20 m layer (subsurface), which may reduce the grain yield of annual crops. The objective of this study was to evaluate if the occurrence of high aluminum saturation and low base saturation in the subsurface, under a no-till system, represents a restrictive environment for crop production, as well as to evaluate forms of lime incorporation for soil acidity correction in the subsurface. For this purpose, an experiment was carried out with soybean (2005/2006), corn (2006/2007), wheat (2007) and soybean (2007/2008) crops, in a Rhodic Hapludox (USDA, 1999) with sandy loam texture, under no-till for four years in the county of Tupanciretã (RS). The six treatments were: no-tillage with and without lime, plowing with and without lime, and chiseling with and without lime. The values of pH-H2O, aluminum saturation and base saturation were evaluated 24 months after treatment application in the layers 0-0.05; 0.05-0.10; 0.10-0.15; 0.15-0.20 and 0.20-0.30 m. The yields of soybean (2005/2006), corn (2006/2007), wheat (2007) and soybean (2007/2008) were evaluated. Soil acidity in the subsurface did not affect crop yield when the acidity in the layer from 0-0.10 m was at levels for which lime application is not recommended, according to CQFSRS/SC (2004). Lime incorporation through plowing was the most efficient way of correcting acidity at deeper levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

First and second branchial arch syndromes (BAS) manifest as combined tissue deficiencies and hypoplasias of the face, external ear, middle ear and maxillary and mandibular arches. They represent the second most common craniofacial malformation after cleft lip and palate. Extended knowledge of the embryology and anatomy of each branchial arch derivative is mandatory for the diagnosis and grading of different BAS lesions and in the follow-up of postoperative patients. In recent years, many new complex surgical approaches and procedures have been designed by maxillofacial surgeons to treat extensive maxillary, mandibular and external and internal ear deformations. The purpose of this review is to evaluate the role of different imaging modalities (orthopantomogram (OPG), lateral and posteroanterior cephalometric radiographs, CT and MRI) in the diagnosis of a wide spectrum of first and second BAS, including hemifacial microsomia, mandibulofacial dysostosis, branchio-oto-renal syndrome, Pierre Robin sequence and Nager acrofacial dysostosis. Additionally, we aim to emphasize the importance of the systematic use of a multimodality imaging approach to facilitate the precise grading of these syndromes, as well as the preoperative planning of different reconstructive surgical procedures and their follow-up during treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compaction is one of the most destructive factors of soil quality, however the effects on the microbial community and enzyme activity have not been investigated in detail so far. The objective of this study was to evaluate the effects of soil compaction caused by the traffic of agricultural machines on the soil microbial community and its enzyme activity. Six compaction levels were induced by tractors with different weights driving over a Eutrustox soil and the final density was measured. Soil samples were collected after corn from the layers 0-0.10 and 0.10-0.20 m. The compaction effect on all studied properties was evident. Total bacteria counts were reduced significantly (by 22-30 %) and by 38-41 % of nitrifying bacteria in the soil with highest bulk density compared to the control. On the other hand, fungi populations increased 55-86 % and denitrifying bacteria 49-53 %. Dehydrogenase activity decreased 20-34 %, urease 44-46 % and phosphatase 26-28 %. The organic matter content and soil pH decreased more in the 0-0.10 than in the 0.10-0.20 m layer and possibly influenced the reduction of the microbial counts, except denitrifying bacteria, and all enzyme activities, except urease. Results indicated that soil compaction influences the community of aerobic microorganisms and their activity. This effect can alter nutrient cycling and reduce crop yields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sustainable management of soils with low natural fertility on family farms in the humid tropics is a great challenge and overcoming it would be an enormous benefit for the environment and the farmers. The objective of this study was to assess the environmental and agronomic benefits of alley cropping, based on the evaluation of C sequestration, soil quality indicators, and corn yields. Combinations of four legumes were used in alley cropping systems in the following treatments: Clitoria fairchildiana + Cajanus cajan; Acacia mangium + Cajanus cajan; Leucaena leucocephala + Cajanus cajan; Clitoria fairchildiana + Leucaena leucocephala; Leucaena leucocephala + Acacia mangium and a control. Corn was used as a cash crop. The C content was determined in the different compartments of soil organic matter, CEC, available P, base saturation, percentage of water saturation, the period of the root hospitality factor below the critical level and corn yield. It was concluded that alley cropping could substitute the slash and burn system in the humid tropics. The main environmental benefit of alley cropping is the maintenance of a dynamic equilibrium between C input and output that could sustain up to 10 Mg ha-1 of C in the litter layer, decreasing atmospheric CO2 levels. Alley cropping is also beneficial from the agricultural point of view, because it increases base saturation and decreases physical resistance to root penetration in the soil layer 0 - 10 cm, which ensures the increase and sustainability of corn yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil properties are closely related with crop production and spite of the measures implemented, spatial variation has been repeatedly observed and described. Identifying and describing spatial variations of soil properties and their effects on crop yield can be a powerful decision-making tool in specific land management systems. The objective of this research was to characterize the spatial and temporal variations in crop yield and chemical and physical properties of a Rhodic Hapludox soil under no-tillage. The studied area of 3.42 ha had been cultivated since 1985 under no-tillage crop rotation in summer and winter. Yield and soil property were sampled in a regular 10 x 10 m grid, with 302 sample points. Yields of several crops were analyzed (soybean, maize, triticale, hyacinth bean and castor bean) as well as soil chemical (pH, Soil Organic Matter (SOM), P, Ca2+, Mg2+, H + Al, B, Fe, Mn, Zn, CEC, sum of bases (SB), and base saturation (V %)) and soil physical properties (saturated hydraulic conductivity, texture, density, total porosity, and mechanical penetration resistance). Data were analyzed using geostatistical analysis procedures and maps based on interpolation by kriging. Great variation in crop yields was observed in the years evaluated. The yield values in the Northern region of the study area were high in some years. Crop yields and some physical and soil chemical properties were spatially correlated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrous oxide (N2O) is the most important non-CO2 greenhouse gas and soil management systems should be evaluated for their N2O mitigation potential. This research evaluated a long-term (22 years) experiment testing the effect of soil management systems on N2O emissions in the postharvest period (autumn) from a subtropical Rhodic Hapludox at the research center FUNDACEP, in Cruz Alta, state of Rio Grande do Sul. Three treatments were evaluated, one under conventional tillage with soybean residues (CTsoybean) and two under no-tillage with soybean (NTsoybean) and maize residues (NTmaize). N2O emissions were measured eight times within 24 days (May 2007) using closed static chambers. Gas flows were obtained based on the relations between gas concentrations in the chamber at regular intervals (0, 15, 30, 45 min) analyzed by gas chromatography. After soybean harvest, accumulated N2O emissions in the period were approximately three times higher in the untilled soil (164 mg m-2 N) than under CT (51 mg m-2 N), with a short-lived N2O peak of 670 mg m-2 h-1 N. In contrast, soil N2O emissions in NT were lower after maize than after soybean, with a N2O peak of 127 g m-2 h-1 N. The multivariate analysis of N2O fluxes and soil variables, which were determined simultaneously with air sampling, demonstrated that the main driving variables of soil N2O emissions were soil microbial activity, temperature, water-filled pore space, and NO3- content. To replace soybean monoculture, crop rotation including maize must be considered as a strategy to decrease soil N2O emissions from NT soils in Southern Brazil in a Autumn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of sewage sludge in Brazilian agriculture was regulated by the resolution no. 375 Conama, in 2006. However, there is a lack of research to adequate the mineral N and P fertilizer doses to be applied in agricultural fields treated with this residue. In a field experiment, the effects of application rates of sewage sludge and mineral N and P fertilizers on the productivity and technical characteristics of the cane-plant and first ratoon (residual effect) crops were evaluated. Four doses of sewage sludge (0, 3.6, 7.2 and 10.8 t ha-1, dry base), of N (0, 30, 60 and 90 kg ha-1) and of P2O5 (0, 60, 120 and 180 kg ha-1) were combined in a factorial and laid out on randomized block design, a with two replications. To evaluate the residual effect of the sludge, 120 kg ha-1 N and 140 kg ha-1 of K2O were applied in all plots. Sludge application at cane planting, with or without N and/or P fertilizer increased the stalk yield from 84 up to 118 t ha-1, with no alteration in the sugarcane quality, compared with the application of NPK fertilizer alone, resulting in a stalk yield of 91 t ha-1. The study of the response surface for stalk yield on lowfertility soil was the basis for a recommendation of mineral N and P fertilizer doses for sugarcane implantation as related to sewage sludge application rates. It was also concluded that a sludge application of 10.8 t ha-1, which is the sludge dose established based on the N criterion according to the resolution Conama nº 375, could a) reduce the use of mineral N by 100 % and of P2O5 by 30 %, with increments of 22 % in stalk yield, as a direct effect of sludge application to cane plant crop, and b) increase the stalk yield in the second harvest (first ratoon) by up to 12 % and sugar yield by up to 11 %, by the residual effect of sludge application to sugar cane.