946 resultados para Seasonal and spatial variations
Resumo:
Concentrations of total organic carbon (TOC) were determined on samples collected during six cruises in the northern Arabian Sea during the 1995 US JGOFS Arabian Sea Process Study. Total organic carbon concentrations and integrated stocks in the upper ocean varied both spatially and seasonally. Highest mixed-layer TOC concentrations (80-100 µM C) were observed near the coast when upwelling was not active, while upwelling tended to reduce local concentrations. In the open ocean, highest mixed-layer TOC concentrations (80-95 µM C) developed in winter (period of the NE Monsoon) and remained through mid summer (early to mid-SW Monsoon). Lowest open ocean mixed-layer concentrations (65-75 µM C) occurred late in the summer (late SW Monsoon) and during the Fall Intermonsoon period. The changes in TOC concentrations resulted in seasonal variations in mean TOC stocks (upper 150 m) of 1.5-2 mole C/m**2, with the lowest stocks found late in the summer during the SW Monsoon-Fall Intermonsoon transition. The seasonal accumulation of TOC north of 15°N was 31-41 x 10**12 g C, mostly taking place over the period of the NE Monsoon, and equivalent to 6-8% of annual primary production estimated for that region in the mid-1970s. A net TOC production rate of 12 mmole C/m**2/d over the period of the NE Monsoon represented ~80% of net community production. Net TOC production was nil during the SW Monsoon, so vertical export would have dominated the export terms over that period. Total organic carbon concentrations varied in vertical profiles with the vertical layering of the water masses, with the Persian Gulf Water TOC concentrations showing a clear signal. Deep water (>2000 m) TOC concentrations were uniform across the basin and over the period of the cruises, averaging 42.3±1.4 µM C.
Resumo:
In order to validate the use of 238U/235U as a paleoredox proxy in carbonates, we examined the incorporation and early diagenetic evolution of U isotopes in shallow Bahamian carbonate sediments. Our sample set consists of a variety of primary precipitates that represent a range of carbonate producing organisms and components that were important in the past (scleractinian corals, calcareous green and red algae, ooids, and mollusks). In addition, four short push cores were taken in different depositional environments to assess the impact of early diagenesis and pore water chemistry on the U isotopic composition of bulk carbonates. We find that U concentrations are much higher in bulk carbonate sediments (avg. 4.1 ppm) than in primary precipitates (avg. 1.5 ppm). In almost all cases, the lowest bulk sediment U concentrations were as high as or higher than the highest concentrations found in primary precipitates. This is consistent with authigenic accumulation of reduced U(IV) during early diagenesis. The extent of this process appears sensitive to pore water H2S, and thus indirectly to organic matter content. d238/235U values were very close to seawater values in all of the primary precipitates, suggesting that these carbonate components could be used to reconstruct changes in seawater U geochemistry. However, d238/235U of bulk sediments from the push cores was 0.2-0.4 per mil heavier than seawater (and primary precipitates). These results indicate that authigenic accumulation of U under open-system sulfidic pore water conditions commonly found in carbonate sediments strongly affects the bulk U concentrations and 238U/235U ratios. We also report the occurrence of dolomite in a tidal pond core which contains low 234U/238U and 238U/235U ratios and discuss the possibility that the dolomitization process may result in sediments depleted in 238U. From this initial exploration, it is clear that 238U/235U variations in ancient carbonate sediments could be driven by changes in global average seawater, by spatial and temporal variations in the local deposition environment, or subsequent diagenesis. To cope with such effects, proxies for syndepositional pore water redox conditions (e.g., organic matter content, iron speciation, and trace metal distributions) and careful consideration of possible post-deposition alteration will be required to avoid spurious interpretation of 238U/235U data from ancient carbonate sediments.
Resumo:
This study focuses on mafic volcanic rocks from the Bouvet triple junction, which fall into six geochemically distinct groups: (1) N-MORB, the most widespread type, encountered throughout the study area. (2) Subalkaline volcanics, hawaiites and mugearites strongly enriched in lithophile elements and radiogenic isotopes and composing the Bouvet volcanic rise, and compositionally similar basalts and basaltic andesites from the Spiess Ridge, generated in a deeper, fertile mantle region. (3) Relatively weakly enriched basalts, T-MORB derived by the mixing of Type 1 and 2 melts and exposed near the axes of the Mid-Atlantic, Southwest Indian, and America-Antarctic Ridges. (4) Basalts with a degree of trace lithophile element enrichment similar to the Spiess Ridge and Bouvet Island rocks, but higher in K, P, Ti, and Cr. These occur within extensional structures: the rift valley of the Southwest Indian Ridge, grabens of the East Dislocation Zone, and the linear rise between the Spiess Ridge and Bouvet volcano. Their parental melts presumably separated from plume material that spread from the main channels and underwent fluid-involving differentiation in the mantle. (5) A volcanic suite ranging from basalt to rhyolite, characterized by low concentrations of lithophile elements, particularly TiO2, and occurring on the Shona Seamount and other compressional features within the Antarctic and South American plates near the Bouvet triple junction. Unlike Types 1 to 4, which display tholeiitic differentiation trends, this suite is calc-alkaline. Its parental melts were presumably related to the plume material as well but, subsequently, they underwent a profound differentiation involving fluids and assimilated surrounding rocks in closed magma chambers in the upper mantle. Alternatively, the Shona Seamount might be a fragment of an ancient oceanic island arc. (6) Enriched basalts, distinguished from the other enriched rock types in very high P and radiogenic isotope abundances and composing a tectonic uplift near the junction of the three rifts. It thus follows that the main factors responsible for the compositional diversity of volcanic rocks in this region include (i) mantle source heterogeneity, (ii) plume activity, (iii) an intricate geodynamic setup at the triple junction giving rise to stresses in adjacent plate areas, and (iv) the geological prehistory. The slow spreading rate and ensuing inefficient mixing of the heterogeneous mantle material result in strong spatial variations in basaltic compositions.
Resumo:
In the monograph metalliferous sediments of the East Pacific Rise near 21°S are under consideration. Distribution trends of chemical, mineral and grain size compositions of metalliferous sediments accumulated near the axis of this ultrafast spreading segment of the EPR are shown. On the basis of lithological and geochemical investigations spatial and temporal variations of hydrothermal activity are estimated. Migration rates of hydrothermal fields along the spreading axis are calculated. The model of cyclic hydrothermal process is suggested as a result of tectono-magmatic development of the spreding centre.
Resumo:
High-resolution records (2 7 kyr) of Upper Pliocene Discoaster abundances obtained from six ODP/DSDP sites are assessed independently using oxygen isotope stratigraphy. Four Atlantic Ocean sites (DSDP Sites 552 and 607, and ODP Sites 659 and 662) comprise a transect from 56°N to 1°S and provide a record of latitudinal variations in Diseoaster biogeography. Low-latitude sites in the Atlantic (ODP Site 662), Pacific (ODP Site 677), and Indian (ODP Site 709) oceans provide additional information about variability in Discoaster abundance patterns within the equatorial region. A common chronology, based on the astronomical time scale developed for ODP Site 677, has been established for all the sites. By integrating oxygen isotope data and Discoaster abundance records at each site we are able to independently evaluate the temporal and spatial distribution of D. brouweri and D. triradiatus in the 500 kyr prior to the extinction of the discoasters near the base of the Olduvai subchron. Major decreases in abundance are evident during some of the more intense late Pliocene glacial events. In particular, glacial isotope stages 82, 96, 98 and 100 are associated with distinct abundance minima. At these times, large-scale changes in surface hydrographic conditions appear to have suppressed Discoaster numbers on a global scale. The increase in abundance of D. triradiatus, which precedes the extinction of the discoasters by around 200 kyr, may also be related to the intensification of environmental pressures that accompanied the build-up of Northern Hemisphere ice sheets during the late Pliocene. In spite of contrasting geographic and oceanographic settings, the various D. brouweri and D. triradiatus records are remarkably similar. This demonstrates that the acme and extinction events are excellent biostratigraphic datums. The simultaneous extinction of D. brouweri and D. triradiatus at 1.95 Ma were synchronous events at both a regional scale within the Atlantic, and on a global scale between the three major oceans. However, the start of the D. triradiatus acme appears to have been diachronous, occurring some 40 kyr earlier in the Atlantic than in the Indo-Pacific, and hence the stratigraphic usefulness of this datum is regional rather than global.
Resumo:
This study investigates changes in the upper water column hydrography at Site 851 of the eastern tropical Pacific Ocean since the late Pliocene, using the oxygen and carbon isotopic composition of three species of planktonic foraminifers, each calcifying at different depths in the photic zone. The upper ocean seasonal hydrography in this region responds to the seasonally changing trade winds and thus is expected to respond to past changes in trade winds. One major change occurs at about 1.5 Ma, when the thermocline adjusts from a deep position to a shallower position. The thermocline remains in a relatively shallow position throughout the record up to recent time, with slight variations occurring synchronously with glacial/interglacial stages. In glacials, SSTs are probably a few degrees cooler and the thermocline is slightly deeper. From our knowledge of seasonal and interannual adjustments of the thermocline in this location, a deeper thermocline might be interpreted as either a decrease in the strength of the Equatorial Undercurrent (EUC) that results from lower mean wind strength or an increase in the Equatorial Countercurrent (ECC), which results from an increase in the strength of the southeasterly trade winds. A major shift from higher to lower carbon isotope values occurred at about 1.9 Ma, marking a transition to reduced planktonic-benthic d13C differences after 1.9 Ma. The carbon isotopic data indicate that changes in the carbon isotopic composition of intermediate upwelling water occurs at higher frequencies than the glacial/interglacial changes in ice volume.
Resumo:
The aim of DSDP Leg 82 was to decipher the temporal and spatial evolution of Azores Plume. The Pb-isotopic results of this leg are rather complex, and can be summarized as follows: 1. At a given site (561, 558), variations of Pb isotopic compositions are generally accompanied by major changes in trace-element ratios, indicating significant heterogeneity of the source region. There is a correlation between Pb isotopes and trace elements. 2. In contrast, if all the data (i.e., all studied sites) of Leg 82 are considered together, no correlation can be discerned between Pb isotopes and trace elements. Site 556, especially, shows abnormal behavior. 3. Leg 82 samples not only cover the entire range of Pb isotopic composition previously established for the Atlantic Ocean, but extend this field to more radiogenic values. 4. The data are compatible with the hot-spot model proposed by Schilling (1975), if one considers that the Azores Plume itself is isotopically heterogeneous, and that it has been progressively contaminated to various degrees by upper mantle material.
Resumo:
Seasonal patterns in hydrography, partial pressure of CO2, fCO2, pHt, total alkalinity, AT, total dissolved inorganic carbon, CT, nutrients, and chlorophyll a were measured in surface waters on monthly cruises at the European Station for Time Series in the Ocean at the Canary Islands (ESTOC) located in the northeast Atlantic subtropical gyre. With over 5 years of oceanographic data starting in 1996, seasonal and interannual trends of CO2 species and air-sea exchange of CO2 were determined. Net CO2 fluxes show this area acts as a minor source of CO2, with an average outgassing value of 179 mmol CO2/m**2 yr controlled by the dominant trade winds blowing from May to August. The effect of short-term wind variability on the CO2 flux has been addressed by increasing air-sea fluxes by 63% for 6-hourly sampling frequency. The processes governing the monthly variations of CT have been determined. From March to October, when CT decreases, mixing at the base of the mixed layer (11.5 ± 1.5 mmol/m**3) is compensated by air-sea exchange, and a net organic production of 25.5 ± 5.7 mmol/m**3 is estimated. On an annual scale, biological drawdown accounts for the decrease in inorganic carbon from March to October, while mixing processes control the CT increase from October to the end of autumn. After removing seasonality variability, fCO2sw increases at a rate of 0.71 ± 5.1 µatm/yr, and as a response to the atmospheric trend, inorganic carbon increases at a rate of 0.39 ± 1.6 µmol/kg yr.
Resumo:
We present subdaily ice flow measurements at four GPS sites between 36 and 72 km from the margin of a marine-terminating Greenland outlet glacier spanning the 2009 melt season. Our data show that >35 km from the margin, seasonal and shorter-time scale ice flow variations are controlled by surface melt-induced changes in subglacial hydrology. Following the onset of melting at each site, ice motion increased above background for up to 2 months with resultant up-glacier migration of both the onset and peak of acceleration. Later in our survey, ice flow at all sites decreased to below background. Multiple 1 to 15 day speedups increased ice motion by up to 40% above background. These events were typically accompanied by uplift and coincided with enhanced surface melt or lake drainage. Our results indicate that the subglacial drainage system evolved through the season with efficient drainage extending to at least 48 km inland during the melt season. While we can explain our observations with reference to evolution of the glacier drainage system, the net effect of the summer speed variations on annual motion is small (~1%). This, in part, is because the speedups are compensated for by slowdowns beneath background associated with the establishment of an efficient subglacial drainage system. In addition, the speedups are less pronounced in comparison to land-terminating systems. Our results reveal similarities between the inland ice flow response of Greenland marine- and land-terminating outlet glaciers.
Resumo:
Planktic foraminiferal (PF) flux and faunal composition from three sediment trap time series of 2002-2004 in the northeastern Atlantic show pronounced year-to-year variations despite similar sea surface temperature (SST). The averaged fauna of the in 2002/2003 is dominated by the species Globigerinita glutinata, whereas in 2003/2004 the averaged fauna is dominated by Globigerinoides ruber. We show that PF species respond primarily to productivity, triggered by the seasonal dynamics of vertical stratification of the upper water column. Multivariate statistical analysis reveals three distinct species groups, linked to bulk particle flux, to chlorophyll concentrations and to summer/fall oligotrophy with high SST and stratification. We speculate that the distinct nutrition strategies of strictly asymbiontic, facultatively symbiontic, and symbiontic species may play a key role in explaining their abundances and temporal succession. Advection of water masses within the Azores Current and species expatriation result in a highly diverse PF assemblage. The Azores Frontal Zone may have influenced the trap site in 2002, indicated by subsurface water cooling, by highest PF flux and high flux of the deep-dwelling species Globorotalia scitula. Similarity analyses with core top samples from the global ocean including 746 sites from the Atlantic suggest that the trap faunas have only poor analogs in the surface sediments. These differences have to be taken into account when estimating past oceanic properties from sediment PF data in the eastern subtropical North Atlantic.
Resumo:
Manganese nodules of the Clarion-Clipperton Fracture Zone (CCFZ) in the NE Pacific Ocean are highly enriched in Ni, Cu, Co, Mo and rare-earth elements, and thus may be the subject of future mining operations. Elucidating the depositional and biogeochemical processes that contribute to nodule formation, as well as the respective redox environment in both, water column and sediment, supports our ability to locate future nodule deposits and evaluates the potential ecological and environmental effects of future deep-sea mining. For these purposes we evaluated the local hydrodynamics and pore-water geochemistry with respect to the nodule coverage at four sites in the eastern CCFZ. Furthermore, we carried out selective leaching experiments at these sites in order to assess the potential mobility of Mn in the solid phase, and compared them with the spatial variations in sedimentation rates. We found that the oxygen penetration depth is 180 - 300 cm at all four sites, while reduction of Mn and NO3- is only significant below the oxygen penetration depth at sites with small or no nodules on the sediment surface. At the site without nodules, potential microbial respiration rates, determined by incubation experiments using 14C-labelled acetate, are slightly higher than at sites with nodules. Leaching experiments showed that surface sediments covered with big or medium-sized nodules are enriched in mobilizable Mn. Our deep oxygen measurements and pore-water data suggest that hydrogenetic and oxic-diagenetic processes control the present-day nodule growth at these sites, since free manganese from deeper sediments is unable to reach the sediment surface. We propose that the observed strong lateral contrasts in nodule size and abundance are sensitive to sedimentation rates, which in turn, are controlled by small-scale variations in seafloor topography and bottom-water current intensity.
Resumo:
The Southern Hemisphere Westerly Winds (SWW) have been suggested to exert a critical influence on global climate through wind-driven upwelling of deep water in the Southern Ocean and the potentially resulting atmospheric CO2 variations. The investigation of the temporal and spatial evolution of the SWW along with forcings and feedbacks remains a significant challenge in climate research. In this study, the evolution of the SWW under orbital forcing from the early Holocene (9 kyr BP) to pre-industrial modern times is examined with transient experiments using the comprehensive coupled global climate model CCSM3. Analyses of the model results suggest that the annual and seasonal mean SWW were subject to an overall strengthening and poleward shifting trend during the course of the early-to-late Holocene under the influence of orbital forcing, except for the austral spring season, where the SWW exhibited an opposite trend of shifting towards the equator.