990 resultados para Schurer-Stancu type operators
Resumo:
A variety of molecular approaches have been used to investigate the structural and enzymatic properties of rat brain type ll Ca^(2+) and calmodulin-dependent protein kinase (type ll CaM kinase). This thesis describes the isolation and biochemical characterization of a brain-region specific isozyme of the kinase and also the regulation the kinase activity by autophosphorylation.
The cerebellar isozyme of the type ll CaM kinase was purified and its biochemical properties were compared to the forebrain isozyme. The cerebellar isozyme is a large (500-kDa) multimeric enzyme composed of multiple copies of 50-kDa α subunits and 60/58-kDa β/β’ subunits. The holoenzyme contains approximately 2 α subunits and 8 β subunits. This contrasts to the forebrain isozyme, which is also composed of and β/β'subunits, but they are assembled into a holoenzyme of approximately 9 α subunits and 3 β/β ' subunits. The biochemical and enzymatic properties of the two isozymes are similar. The two isozymes differ in their association with subcellular structures. Approximately 85% of the cerebellar isozyme, but only 50% of the forebrain isozyme, remains associated with the particulate fraction after homogenization under standard conditions. Postsynaptic densities purified from forebrain contain the forebrain isozyme, and the kinase subunits make up about 16% of their total protein. Postsynaptic densities purified from cerebellum contain the cerebellar isozyme, but the kinase subunits make up only 1-2% of their total protein.
The enzymatic activity of both isozymes of the type II CaM kinase is regulated by autophosphorylation in a complex manner. The kinase is initially completely dependent on Ca^(2+)/calmodulin for phosphorylation of exogenous substrates as well as for autophosphorylation. Kinase activity becomes partially Ca^(2+) independent after autophosphorylation in the presence of Ca^(2+)/calmodulin. Phosphorylation of only a few subunits in the dodecameric holoenzyme is sufficient to cause this change, suggesting an allosteric interaction between subunits. At the same time, autophosphorylation itself becomes independent of Ca^(2+) These observations suggest that the kinase may be able to exist in at least two stable states, which differ in their requirements for Ca^(2+)/calmodulin.
The autophosphorylation sites that are involved in the regulation of kinase activity have been identified within the primary structure of the α and β subunits. We used the method of reverse phase-HPLC tryptic phosphopeptide mapping to isolate individual phosphorylation sites. The phosphopeptides were then sequenced by gas phase microsequencing. Phosphorylation of a single homologous threonine residue in the α and β subunits is correlated with the production of the Ca^(2+) -independent activity state of the kinase. In addition we have identified several sites that are phosphorylated only during autophosphorylation in the absence of Ca^(2+)/ calmodulin.
Resumo:
The problem of the existence and stability of periodic solutions of infinite-lag integra-differential equations is considered. Specifically, the integrals involved are of the convolution type with the dependent variable being integrated over the range (- ∞,t), as occur in models of population growth. It is shown that Hopf bifurcation of periodic solutions from a steady state can occur, when a pair of eigenvalues crosses the imaginary axis. Also considered is the existence of traveling wave solutions of a model population equation allowing spatial diffusion in addition to the usual temporal variation. Lastly, the stability of the periodic solutions resulting from Hopf bifurcation is determined with aid of a Floquet theory.
The first chapter is devoted to linear integro-differential equations with constant coefficients utilizing the method of semi-groups of operators. The second chapter analyzes the Hopf bifurcation providing an existence theorem. Also, the two-timing perturbation procedure is applied to construct the periodic solutions. The third chapter uses two-timing to obtain traveling wave solutions of the diffusive model, as well as providing an existence theorem. The fourth chapter develops a Floquet theory for linear integro-differential equations with periodic coefficients again using the semi-group approach. The fifth chapter gives sufficient conditions for the stability or instability of a periodic solution in terms of the linearization of the equations. These results are then applied to the Hopf bifurcation problem and to a certain population equation modeling periodically fluctuating environments to deduce the stability of the corresponding periodic solutions.
Resumo:
This paper investigates the effects of spontaneously induced coherence on absorption properties in a nearly equispaced three-level ladder-type system driven by two coherent fields. It find that the absorption properties of this system with the probe field applied on the lower transition can be significantly modified if this coherence is optimized. In the case of small spontaneous decay rate in the upper excited state, it finds that such coherence does not destroy the electromagnetically induced transparency (EIT). Nevertheless, the absorption peak on both sides of zero detuning and the linewidth of absorption line become larger and narrower than those in the case corresponding to the effects of spontaneously induced coherence; while in the case of large decay rate, it finds that, instead of EIT with low resonant absorption, a sharp absorption peak at resonance appears. That is, electromagnetically induced absorption in the nearly equispaced ladder-type system can occur due to such coherent effects.
Resumo:
In this thesis we consider smooth analogues of operators studied in connection with the pointwise convergence of the solution, u(x,t), (x,t) ∈ ℝ^n x ℝ, of the free Schrodinger equation to the given initial data. Such operators are interesting examples of oscillatory integral operators with degenerate phase functions, and we develop strategies to capture the oscillations and obtain sharp L^2 → L^2 bounds. We then consider, for fixed smooth t(x), the restriction of u to the surface (x,t(x)). We find that u(x,t(x)) ∈ L^2(D^n) when the initial data is in a suitable L^2-Sobolev space H^8 (ℝ^n), where s depends on conditions on t.
Resumo:
This thesis consists of three separate studies of roles that black holes might play in our universe.
In the first part we formulate a statistical method for inferring the cosmological parameters of our universe from LIGO/VIRGO measurements of the gravitational waves produced by coalescing black-hole/neutron-star binaries. This method is based on the cosmological distance-redshift relation, with "luminosity distances" determined directly, and redshifts indirectly, from the gravitational waveforms. Using the current estimates of binary coalescence rates and projected "advanced" LIGO noise spectra, we conclude that by our method the Hubble constant should be measurable to within an error of a few percent. The errors for the mean density of the universe and the cosmological constant will depend strongly on the size of the universe, varying from about 10% for a "small" universe up to and beyond 100% for a "large" universe. We further study the effects of random gravitational lensing and find that it may strongly impair the determination of the cosmological constant.
In the second part of this thesis we disprove a conjecture that black holes cannot form in an early, inflationary era of our universe, because of a quantum-field-theory induced instability of the black-hole horizon. This instability was supposed to arise from the difference in temperatures of any black-hole horizon and the inflationary cosmological horizon; it was thought that this temperature difference would make every quantum state that is regular at the cosmological horizon be singular at the black-hole horizon. We disprove this conjecture by explicitly constructing a quantum vacuum state that is everywhere regular for a massless scalar field. We further show that this quantum state has all the nice thermal properties that one has come to expect of "good" vacuum states, both at the black-hole horizon and at the cosmological horizon.
In the third part of the thesis we study the evolution and implications of a hypothetical primordial black hole that might have found its way into the center of the Sun or any other solar-type star. As a foundation for our analysis, we generalize the mixing-length theory of convection to an optically thick, spherically symmetric accretion flow (and find in passing that the radial stretching of the inflowing fluid elements leads to a modification of the standard Schwarzschild criterion for convection). When the accretion is that of solar matter onto the primordial hole, the rotation of the Sun causes centrifugal hangup of the inflow near the hole, resulting in an "accretion torus" which produces an enhanced outflow of heat. We find, however, that the turbulent viscosity, which accompanies the convective transport of this heat, extracts angular momentum from the inflowing gas, thereby buffering the torus into a lower luminosity than one might have expected. As a result, the solar surface will not be influenced noticeably by the torus's luminosity until at most three days before the Sun is finally devoured by the black hole. As a simple consequence, accretion onto a black hole inside the Sun cannot be an answer to the solar neutrino puzzle.
Resumo:
Let l be any odd prime, and ζ a primitive l-th root of unity. Let C_l be the l-Sylow subgroup of the ideal class group of Q(ζ). The Teichmüller character w : Z_l → Z^*_l is given by w(x) = x (mod l), where w(x) is a p-1-st root of unity, and x ∈ Z_l. Under the action of this character, C_l decomposes as a direct sum of C^((i))_l, where C^((i))_l is the eigenspace corresponding to w^i. Let the order of C^((3))_l be l^h_3). The main result of this thesis is the following: For every n ≥ max( 1, h_3 ), the equation x^(ln) + y^(ln) + z^(ln) = 0 has no integral solutions (x,y,z) with l ≠ xyz. The same result is also proven with n ≥ max(1,h_5), under the assumption that C_l^((5)) is a cyclic group of order l^h_5. Applications of the methods used to prove the above results to the second case of Fermat's last theorem and to a Fermat-like equation in four variables are given.
The proof uses a series of ideas of H.S. Vandiver ([Vl],[V2]) along with a theorem of M. Kurihara [Ku] and some consequences of the proof of lwasawa's main conjecture for cyclotomic fields by B. Mazur and A. Wiles [MW]. In [V1] Vandiver claimed that the first case of Fermat's Last Theorem held for l if l did not divide the class number h^+ of the maximal real subfield of Q(e^(2πi/i)). The crucial gap in Vandiver's attempted proof that has been known to experts is explained, and complete proofs of all the results used from his papers are given.
Resumo:
This thesis focuses mainly on linear algebraic aspects of combinatorics. Let N_t(H) be an incidence matrix with edges versus all subhypergraphs of a complete hypergraph that are isomorphic to H. Richard M. Wilson and the author find the general formula for the Smith normal form or diagonal form of N_t(H) for all simple graphs H and for a very general class of t-uniform hypergraphs H.
As a continuation, the author determines the formula for diagonal forms of integer matrices obtained from other combinatorial structures, including incidence matrices for subgraphs of a complete bipartite graph and inclusion matrices for multisets.
One major application of diagonal forms is in zero-sum Ramsey theory. For instance, Caro's results in zero-sum Ramsey numbers for graphs and Caro and Yuster's results in zero-sum bipartite Ramsey numbers can be reproduced. These results are further generalized to t-uniform hypergraphs. Other applications include signed bipartite graph designs.
Research results on some other problems are also included in this thesis, such as a Ramsey-type problem on equipartitions, Hartman's conjecture on large sets of designs and a matroid theory problem proposed by Welsh.
Resumo:
The group velocities of the probe laser field are studied in a A-type system where one lower state has two fold levels coupled by a control field. It is found that the interaction of double dark states leads to controllable group velocity of the probe field in this system. It can be easily realized, due to the interacting double dark resonances, that one of the group velocities at transparency positions is much slower than the other by tuning the control field to be off resonance. In particular, when the control field is on resonance. we can obtain two equal slow group velocities with a broader EIT width, which provides potential applications in quantum storage and retrieval of light. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A novel phase-type quantum-dot-array diffraction grating (QDADG) is reported. In contrast to an earlier amplitude-type QDADG [C. Wang , Rev. Sci. Instrum. 78, 053503 (2007)], the new phase-type QDADG would remove the zeroth order diffraction at some certain wavelength, as well as suppressing the higher-order diffractions. In this paper, the basic concept, the fabrication, the calibration techniques, and the calibration results are presented. Such a grating can be applied in the research fields of beam splitting, laser probe diagnostics, and so on.
Resumo:
By solving numerically the full Maxwell-Bloch equations without the slowly varying envelope approximation and the rotating-wave approximation, we investigate the effects of Lorentz local field correction (LFC) on the propagation properties of few-cycle laser pulse in a dense A-type three-level atomic medium. We find that: when the area of the input pulse is larger, split of pulse occurs and the number of the sub-pulses with LFC is larger than that without LFC; at the same distance, the time interval between the first sub-pulse and the second sub-pulse in the case without LFC is longer than that with LFC, the time of pulse appearing in the case without LFC is later than that in the case with LFC, and the two phenomena are more obvious with propagation distance increasing; time evolution rules of the populations of levels vertical bar 1 >, vertical bar 2 > and vertical bar 3 > in the two cases with and without LFC are much different. When the area of the input pulse is smaller, effects of LFC on time evolutions of the pulse and populations are remarkably smaller than those in the case of larger area pulse. (c) 2008 Elsevier B.V. All rights reserved.