906 resultados para Satellite solar power stations.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technique of Satellite Laser Ranging is today a mature, important tool with applications in many area of geodynamics, geodesy and satellite dynamics. A global network of some 40 stations regularly obtains range observations with sub-cm precision to more than twelve orbiting spacecraft. At such levels of precision it is important to minimise potential sources of range bias in the observations, and part of the thesis is a study of subtle effects caused by the extended nature of the arrays of retro-reflectors on the satellites. We develop models that give a precise correction of the range measurements to the centres of mass of the geodetic satellites Lageos and Etalon, appropriate to a variety of different ranging systems, and use the Etalon values, which were not determined during pre-launch tests, in an extended orbital analysis. We have fitted continuous 2.5 year orbits to range observations of the Etalons from the global network of stations, and analysed the results by mapping the range residuals from these orbits into equivalent corrections to orbital elements over short time intervals. From these residuals we have detected and studied large un-modelled along-track accelerations associated with periods during which the satellites are undergoing eclipse by the Earth's shadow. We also find that the eccentricity residuals are significantly different for the two satellites, with Etalon-2 undergoing a year-long eccentricity anomaly similar in character to that experienced at intervals by Lageos-1. The nodal residuals show that the satellites define a very stable reference frame for Earth rotation determination, with very little drift-off during the 2.5 year period. We show that an analysis of more than about eight years of tracking data would be required to derive a significant value for 2. The reference frame defined by the station coordinates derived from the analyses shows very good agreement with that of ITRF93.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the failure of PRARE the orbital accuracy of ERS-1 is typically 10-15 cm radially as compared to 3-4cm for TOPEX/Poseidon. To gain the most from these simultaneous datasets it is necessary to improve the orbital accuracy of ERS-1 so that it is commensurate with that of TOPEX/Poseidon. For the integration of these two datasets it is also necessary to determine the altimeter and sea state biases for each of the satellites. Several models for the sea state bias of ERS-1 are considered by analysis of the ERS-1 single satellite crossovers. The model adopted consists of the sea state bias as a percentage of the significant wave height, namely 5.95%. The removal of ERS-1 orbit error and recovery of an ERS-1 - TOPEX/Poseidon relative bias are both achieved by analysis of dual crossover residuals. The gravitational field based radial orbit error is modelled by a finite Fourier expansion series with the dominant frequencies determined by analysis of the JGM-2 co-variance matrix. Periodic and secular terms to model the errors due to atmospheric density, solar radiation pressure and initial state vector mis-modelling are also solved for. Validation of the dataset unification consists of comparing the mean sea surface topographies and annual variabilities derived from both the corrected and uncorrected ERS-1 orbits with those derived from TOPEX/Poseidon. The global and regional geographically fixed/variable orbit errors are also analysed pre and post correction, and a significant reduction is noted. Finally the use of dual/single satellite crossovers and repeat pass data, for the calibration of ERS-2 with respect to ERS-1 and TOPEX/Poseidon is shown by calculating the ERS-1/2 sea state and relative biases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study of concentrating solar thermal power generation sets out to evaluate the main existing collection technologies using the framework of the Analytical Hierarchy Process (AHP). It encompasses parabolic troughs, heliostat fields, linear Fresnel reflectors, parabolic dishes, compound parabolic concentrators and linear Fresnel lenses. These technologies are compared based on technical, economic and environmental criteria. Within these three categories, numerous sub-criteria are identified; similarly sub-alternatives are considered for each technology. A literature review, thermodynamic calculations and an expert workshop have been used to arrive at quantitative and qualitative assessments. The methodology is applied principally to a case study in Gujarat in north-west India, though case studies based on the Sahara Desert, Southern Spain and California are included for comparison. A sensitivity analysis is carried out for Gujarat. The study concludes that the linear Fresnel lens with a secondary compound parabolic collector, or the parabolic dish reflector, is the preferred technology for north-west India.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desalination of groundwater is essential in arid regions that are remote from both seawater and freshwater resources. Desirable features of a groundwater desalination system include a high recovery ratio, operation from a sustainable energy source such as solar, and high water output per unit of energy and land. Here we propose a new system that uses a solar-Rankine cycle to drive reverse osmosis (RO). The working fluid such as steam is expanded against a power piston that actuates a pump piston which in turn pressurises the saline water thus passing it through RO membranes. A reciprocating crank mechanism is used to equalise the forces between the two pistons. The choice of batch mode in preference to continuous flow permits maximum energy recovery and minimal concentration polarisation in the vicinity of the RO membrane. This study analyses the sizing and efficiency of the crank mechanism, quantifies energy losses in the RO separation and predicts the overall performance. For example, a system using a field of linear Fresnel collectors occupying 1000 m2 of land and raising steam at 200 °C and 15.5 bar could desalinate 350 m3/day from saline water containing 5000 ppm of sodium chloride with a recovery ratio of 0.7.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of a system that integrates reverse osmosis (RO) with a horticultural greenhouse has been advanced through laboratory experiments. In this concept, intended for the inland desalination of brackish groundwater in dry areas, the RO concentrate will be reduced in volume by passing it through the evaporative cooling pads of the greenhouse. The system will be powered by solar photovoltaics (PV). Using a solar array simulator, we have verified that the RO can operate with varying power input and recovery rates to meet the water demands for irrigation and cooling of a greenhouse in north-west India. Cooling requires ventilation by a fan which has also been built, tested and optimised with a PV module outdoors. Results from the experiments with these two subsystems (RO and fan) are compared to theoretical predictions to reach conclusions about energy usage, sizing and cost. For example, the optimal sizing for the RO system is 0.12–1.3 m2 of PV module per m2 of membrane, depending on feed salinity. For the fan, the PV module area equals that of the fan aperture. The fan consumes <30 J of electrical energy per m3 of air moved which is 3 times less than that of standard fans. The specific energy consumption of the RO, at 1–2.3 kWh ?m-3, is comparable to that reported by others. Now that the subsystems have been verifi ed, the next step will be to integrate and test the whole system in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For remote, semi-arid areas, brackish groundwater (BW) desalination powered by solar energy may serve as the most technically and economically viable means to alleviate the water stresses. For such systems, high recovery ratio is desired because of the technical and economical difficulties of concentrate management. It has been demonstrated that the current, conventional solar reverse osmosis (RO) desalination can be improved by 40–200 times by eliminating unnecessary energy losses. In this work, a batch-RO system that can be powered by a thermal Rankine cycle has been developed. By directly recycling high pressure concentrates and by using a linkage connection to provide increasing feed pressures, the batch-RO has been shown to achieve a 70% saving in energy consumption compared to a continuous single-stage RO system. Theoretical investigations on the mass transfer phenomena, including dispersion and concentration polarization, have been carried out to complement and to guide experimental efforts. The performance evaluation of the batch-RO system, named DesaLink, has been based on extensive experimental tests performed upon it. Operating DesaLink using compressed air as power supply under laboratory conditions, a freshwater production of approximately 300 litres per day was recorded with a concentration of around 350 ppm, whilst the feed water had a concentration range of 2500–4500 ppm; the corresponding linkage efficiency was around 40%. In the computational aspect, simulation models have been developed and validated for each of the subsystems of DesaLink, upon which an integrated model has been realised for the whole system. The models, both the subsystem ones and the integrated one, have been demonstrated to predict accurately the system performance under specific operational conditions. A simulation case study has been performed using the developed model. Simulation results indicate that the system can be expected to achieve a water production of 200 m3 per year by using a widely available evacuated tube solar collector having an area of only 2 m2. This freshwater production would satisfy the drinking water needs of 163 habitants in the Rajasthan region, the area for which the case study was performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

External combustion heat cycle engines convert thermal energy into useful work. Thermal energy resources include solar, geothermal, bioenergy, and waste heat. To harness these and maximize work output, there has been a renaissance of interest in the investigation of vapour power cycles for quasi-isothermal (near constant temperature) instead of adiabatic expansion. Quasi-isothermal expansion has the advantage of bringing the cycle efficiency closer to the ideal Carnot efficiency, but it requires heat to be transferred to the working fluid as it expands. This paper reviews various low-temperature vapour power cycle heat engines with quasi-isothermal expansion, including the methods employed to realize the heat transfer. The heat engines take the form of the Rankine cycle with continuous heat addition during the expansion process, or the Stirling cycle with a condensable vapour as working fluid. Compared to more standard Stirling engines using gas, the specific work output is higher. Cryogenic heat engines based on the Rankine cycle have also been enhanced with quasi-isothermal expansion. Liquid flooded expansion and expander surface heating are the two main heat transfer methods employed. Liquid flooded expansion has been applied mainly in rotary expanders, including scroll turbines; whereas surface heating has been applied mainly in reciprocating expanders. © 2014 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Though the principle of the solar Rankine cycle is well known, with several examples reported in the literature, there is yet a scarcity of engines that could be efficiently applied in small-scale (<100 KW) applications. Hence, this paper presents a variant of the engine that uses an isothermal expansion to achieve a theoretical efficiency close to the Carnot limit. Generation of steam inside the power cylinder obviates the need for an external boiler. The device is suitable for slow-moving applications and is of particular interest for driving a batch-desalination process. Preliminary experiments have shown cycle efficiency of 16%, and a high work ratio of 0.997. ©The Author 2013. Published by Oxford University Press. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric vehicles (EVs) provide a feasible solution to reducing greenhouse gas emissions and thus become a hot topic for research and development. Switched reluctance motors (SRMs) are one of promised motors for EV applications. In order to extend the EVs’ driving miles, the use of photovoltaic (PV) panels on the vehicle helps decrease the reliance on vehicle batteries. Based on phase winding characteristics of SRMs, a tri-port converter is proposed in this paper to control the energy flow between the PV panel, battery and SRM. Six operating modes are presented, four of which are developed for driving and two for standstill on-board charging. In the driving modes, the energy decoupling control for maximum power point tracking (MPPT) of the PV panel and speed control of the SRM are realized. In the standstill charging modes, a grid-connected charging topology is developed without a need for external hardware. When the PV panel directly charges the battery, a multi-section charging control strategy is used to optimize energy utilization. Simulation results based on Matlab/Simulink and experiments prove the effectiveness of the proposed tri-port converter, which has potential economic implications to improve the market acceptance of EVs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photovoltaic (PV) stations have been widely built in the world to utilize solar energy directly. In order to reduce the capital and operational costs, early fault diagnosis is playing an increasingly important role by enabling the long effective operation of PV arrays. This paper analyzes the terminal characteristics of faulty PV strings and arrays, and it develops a PV array fault diagnosis technique. The terminal current-voltage curve of a faulty PV array is divided into two sections, i.e., high-voltage and low-voltage fault diagnosis sections. The corresponding working points of healthy string modules and of healthy and faulty modules in an unhealthy string are then analyzed for each section. By probing into different working points, a faulty PV module can be located. The fault information is of critical importance for the maximum power point tracking and the array dynamical reconfiguration. Furthermore, the string current sensors can be eliminated, and the number of voltage sensors can be reduced by optimizing voltage sensor locations. Typical fault scenarios including monostring, multistring, and a partial shadow for a 1.6-kW 3 $times$ 3 PV array are presented and experimentally tested to confirm the effectiveness of the proposed fault diagnosis method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study is an attempt at achieving Net Zero Energy Building (NZEB) using a solar Organic Rankine Cycle (ORC) based on exergetic and economic measures. The working fluid, working conditions of the cycle, cycle configuration, and solar collector type are considered the optimization parameters for the solar ORC system. In the first section, a procedure is developed to compare ORC working fluids based on their molecular components, temperature-entropy diagram and fluid effects on the thermal efficiency, net power generated, vapor expansion ratio, and exergy efficiency of the Rankine cycle. Fluids with the best cycle performance are recognized in two different temperature levels within two different categories of fluids: refrigerants and non-refrigerants. Important factors that could lead to irreversibility reduction of the solar ORC are also investigated in this study. In the next section, the system requirements needed to maintain the electricity demand of a geothermal air-conditioned commercial building located in Pensacola of Florida is considered as the criteria to select the optimal components and optimal working condition of the system. The solar collector loop, building, and geothermal air conditioning system are modeled using TRNSYS. Available electricity bills of the building and the 3-week monitoring data on the performance of the geothermal system are employed to calibrate the simulation. The simulation is repeated for Miami and Houston in order to evaluate the effect of the different solar radiations on the system requirements. The final section discusses the exergoeconomic analysis of the ORC system with the optimum performance. Exergoeconomics rests on the philosophy that exergy is the only rational basis for assigning monetary costs to a system’s interactions with its surroundings and to the sources of thermodynamic inefficiencies within it. Exergoeconomic analysis of the optimal ORC system shows that the ratio Rex of the annual exergy loss to the capital cost can be considered a key parameter in optimizing a solar ORC system from the thermodynamic and economic point of view. It also shows that there is a systematic correlation between the exergy loss and capital cost for the investigated solar ORC system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The future power grid will effectively utilize renewable energy resources and distributed generation to respond to energy demand while incorporating information technology and communication infrastructure for their optimum operation. This dissertation contributes to the development of real-time techniques, for wide-area monitoring and secure real-time control and operation of hybrid power systems. ^ To handle the increased level of real-time data exchange, this dissertation develops a supervisory control and data acquisition (SCADA) system that is equipped with a state estimation scheme from the real-time data. This system is verified on a specially developed laboratory-based test bed facility, as a hardware and software platform, to emulate the actual scenarios of a real hybrid power system with the highest level of similarities and capabilities to practical utility systems. It includes phasor measurements at hundreds of measurement points on the system. These measurements were obtained from especially developed laboratory based Phasor Measurement Unit (PMU) that is utilized in addition to existing commercially based PMU’s. The developed PMU was used in conjunction with the interconnected system along with the commercial PMU’s. The tested studies included a new technique for detecting the partially islanded micro grids in addition to several real-time techniques for synchronization and parameter identifications of hybrid systems. ^ Moreover, due to numerous integration of renewable energy resources through DC microgrids, this dissertation performs several practical cases for improvement of interoperability of such systems. Moreover, increased number of small and dispersed generating stations and their need to connect fast and properly into the AC grids, urged this work to explore the challenges that arise in synchronization of generators to the grid and through introduction of a Dynamic Brake system to improve the process of connecting distributed generators to the power grid.^ Real time operation and control requires data communication security. A research effort in this dissertation was developed based on Trusted Sensing Base (TSB) process for data communication security. The innovative TSB approach improves the security aspect of the power grid as a cyber-physical system. It is based on available GPS synchronization technology and provides protection against confidentiality attacks in critical power system infrastructures. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increase in the efficiency of photo-voltaic systems has been the object of various studies the past few years. One possible way to increase the power extracted by a photovoltaic panel is the solar tracking, performing its movement in order to follow the sun’s path. One way to activate the tracking system is using an electric induction motor, which should have sufficient torque and low speed, ensuring tracking accuracy. With the use of voltage source inverters and logic devices that generate the appropriate switching is possible to obtain the torque and speed required for the system to operate. This paper proposes the implementation of a angular position sensor and a driver to be applied in solar tracker built at a Power Electronics and Renewable Energies Laboratory, located in UFRN. The speed variation of the motor is performed via a voltage source inverter whose PWM command to actuate their keys will be implemented in an FPGA (Field Programmable Gate Array) device and a TM4C microcontroller. A platform test with an AC induction machine of 1.5 CV was assembled for the comparative testing. The angular position sensor of the panel is implemented in a ATMega328 microcontroller coupled to an accelerometer, commanded by an Arduino prototyping board. The solar position is also calculated by the microcontroller from the geographic coordinates of the site where it was placed, and the local time and date obtained from an RTC (Real-Time Clock) device. A prototype of a solar tracker polar axis moved by a DC motor was assembled to certify the operation of the sensor and to check the tracking efficiency.