910 resultados para SYNTHETIC-APERTURE RADAR
Resumo:
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5°-resolution range from approximately 50% at 1 mm h−1 to 20% at 14 mm h−1. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%–80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5° resolution is relatively small (less than 6% at 5 mm day−1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%–35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%–15% at 5 mm day−1, with proportionate reductions in latent heating sampling errors.
Resumo:
A new Bayesian algorithm for retrieving surface rain rate from Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) over the ocean is presented, along with validations against estimates from the TRMM Precipitation Radar (PR). The Bayesian approach offers a rigorous basis for optimally combining multichannel observations with prior knowledge. While other rain-rate algorithms have been published that are based at least partly on Bayesian reasoning, this is believed to be the first self-contained algorithm that fully exploits Bayes’s theorem to yield not just a single rain rate, but rather a continuous posterior probability distribution of rain rate. To advance the understanding of theoretical benefits of the Bayesian approach, sensitivity analyses have been conducted based on two synthetic datasets for which the “true” conditional and prior distribution are known. Results demonstrate that even when the prior and conditional likelihoods are specified perfectly, biased retrievals may occur at high rain rates. This bias is not the result of a defect of the Bayesian formalism, but rather represents the expected outcome when the physical constraint imposed by the radiometric observations is weak owing to saturation effects. It is also suggested that both the choice of the estimators and the prior information are crucial to the retrieval. In addition, the performance of the Bayesian algorithm herein is found to be comparable to that of other benchmark algorithms in real-world applications, while having the additional advantage of providing a complete continuous posterior probability distribution of surface rain rate.
Resumo:
Several previous studies have attempted to assess the sublimation depth-scales of ice particles from clouds into clear air. Upon examining the sublimation depth-scales in the Met Office Unified Model (MetUM), it was found that the MetUM has evaporation depth-scales 2–3 times larger than radar observations. Similar results can be seen in the European Centre for Medium-Range Weather Forecasts (ECMWF), Regional Atmospheric Climate Model (RACMO) and Météo-France models. In this study, we use radar simulation (converting model variables into radar observations) and one-dimensional explicit microphysics numerical modelling to test and diagnose the cause of the deep sublimation depth-scales in the forecast model. The MetUM data and parametrization scheme are used to predict terminal velocity, which can be compared with the observed Doppler velocity. This can then be used to test the hypothesis as to why the sublimation depth-scale is too large within the MetUM. Turbulence could lead to dry air entrainment and higher evaporation rates; particle density may be wrong, particle capacitance may be too high and lead to incorrect evaporation rates or the humidity within the sublimating layer may be incorrectly represented. We show that the most likely cause of deep sublimation zones is an incorrect representation of model humidity in the layer. This is tested further by using a one-dimensional explicit microphysics model, which tests the sensitivity of ice sublimation to key atmospheric variables and is capable of including sonde and radar measurements to simulate real cases. Results suggest that the MetUM grid resolution at ice cloud altitudes is not sufficient enough to maintain the sharp drop in humidity that is observed in the sublimation zone.
Resumo:
Chatterbox Challenge is an annual web-based contest for artificial conversational systems, ACE. The 2010 instantiation was the tenth consecutive contest held between March and June in the 60th year following the publication of Alan Turing’s influential disquisition ‘computing machinery and intelligence’. Loosely based on Turing’s viva voca interrogator-hidden witness imitation game, a thought experiment to ascertain a machine’s capacity to respond satisfactorily to unrestricted questions, the contest provides a platform for technology comparison and evaluation. This paper provides an insight into emotion content in the entries since the 2005 Chatterbox Challenge. The authors find that synthetic textual systems, none of which are backed by academic or industry funding, are, on the whole and more than half a century since Weizenbaum’s natural language understanding experiment, little further than Eliza in terms of expressing emotion in dialogue. This may be a failure on the part of the academic AI community for ignoring the Turing test as an engineering challenge.
Resumo:
The assimilation of Doppler radar radial winds for high resolution NWP may improve short term forecasts of convective weather. Using insects as the radar target, it is possible to provide wind observations during convective development. This study aims to explore the potential of these new observations, with three case studies. Radial winds from insects detected by 4 operational weather radars were assimilated using 3D-Var into a 1.5 km resolution version of the Met Office Unified Model, using a southern UK domain and no convective parameterization. The effect on the analysis wind was small, with changes in direction and speed up to 45° and 2 m s−1 respectively. The forecast precipitation was perturbed in space and time but not substantially modified. Radial wind observations from insects show the potential to provide small corrections to the location and timing of showers but not to completely relocate convergence lines. Overall, quantitative analysis indicated the observation impact in the three case studies was small and neutral. However, the small sample size and possible ground clutter contamination issues preclude unequivocal impact estimation. The study shows the potential positive impact of insect winds; future operational systems using dual polarization radars which are better able to discriminate between insects and clutter returns should provided a much greater impact on forecasts.
Resumo:
High-resolution satellite radar observations of erupting volcanoes can yield valuable information on rapidly changing deposits and geomorphology. Using the TerraSAR-X (TSX) radar with a spatial resolution of about 2 m and a repeat interval of 11-days, we show how a variety of techniques were used to record some of the eruptive history of the Soufriere Hills Volcano, Montserrat between July 2008 and February 2010. After a 15-month pause in lava dome growth, a vulcanian explosion occurred on 28 July 2008 whose vent was hidden by dense cloud. We were able to show the civil authorities using TSX change difference images that this explosion had not disrupted the dome sufficient to warrant continued evacuation. Change difference images also proved to be valuable in mapping new pyroclastic flow deposits: the valley-occupying block-and-ash component tending to increase backscatter and the marginal surge deposits reducing it, with the pattern reversing after the event. By comparing east- and west-looking images acquired 12 hours apart, the deposition of some individual pyroclastic flows can be inferred from change differences. Some of the narrow upper sections of valleys draining the volcano received many tens of metres of rockfall and pyroclastic flow deposits over periods of a few weeks. By measuring the changing shadows cast by these valleys in TSX images the changing depth of infill by deposits could be estimated. In addition to using the amplitude data from the radar images we also used their phase information within the InSAR technique to calculate the topography during a period of no surface activity. This enabled areas of transient topography, crucial for directing future flows, to be captured.
Resumo:
The differential phase (ΦDP) measured by polarimetric radars is recognized to be a very good indicator of the path integrated by rain. Moreover, if a linear relationship is assumed between the specific differential phase (KDP) and the specific attenuation (AH) and specific differential attenuation (ADP), then attenuation can easily be corrected. The coefficients of proportionality, γH and γDP, are, however, known to be dependent in rain upon drop temperature, drop shapes, drop size distribution, and the presence of large drops causing Mie scattering. In this paper, the authors extensively apply a physically based method, often referred to as the “Smyth and Illingworth constraint,” which uses the constraint that the value of the differential reflectivity ZDR on the far side of the storm should be low to retrieve the γDP coefficient. More than 30 convective episodes observed by the French operational C-band polarimetric Trappes radar during two summers (2005 and 2006) are used to document the variability of γDP with respect to the intrinsic three-dimensional characteristics of the attenuating cells. The Smyth and Illingworth constraint could be applied to only 20% of all attenuated rays of the 2-yr dataset so it cannot be considered the unique solution for attenuation correction in an operational setting but is useful for characterizing the properties of the strongly attenuating cells. The range of variation of γDP is shown to be extremely large, with minimal, maximal, and mean values being, respectively, equal to 0.01, 0.11, and 0.025 dB °−1. Coefficient γDP appears to be almost linearly correlated with the horizontal reflectivity (ZH), differential reflectivity (ZDR), and specific differential phase (KDP) and correlation coefficient (ρHV) of the attenuating cells. The temperature effect is negligible with respect to that of the microphysical properties of the attenuating cells. Unusually large values of γDP, above 0.06 dB °−1, often referred to as “hot spots,” are reported for 15%—a nonnegligible figure—of the rays presenting a significant total differential phase shift (ΔϕDP > 30°). The corresponding strongly attenuating cells are shown to have extremely high ZDR (above 4 dB) and ZH (above 55 dBZ), very low ρHV (below 0.94), and high KDP (above 4° km−1). Analysis of 4 yr of observed raindrop spectra does not reproduce such low values of ρHV, suggesting that (wet) ice is likely to be present in the precipitation medium and responsible for the attenuation and high phase shifts. Furthermore, if melting ice is responsible for the high phase shifts, this suggests that KDP may not be uniquely related to rainfall rate but can result from the presence of wet ice. This hypothesis is supported by the analysis of the vertical profiles of horizontal reflectivity and the values of conventional probability of hail indexes.
Resumo:
Removal of silyl protection from D-glucose derived substrate 6 afforded 7, which upon acetonide deprotection followed by reaction with N-benzylhydroxylamine furnished two isomeric isoxazolidinocyclopentane derivatives via spontaneous cyclization of an in situ generated nitrone. The methyl xanthate derivative of the tertiary hydroxyl group of one isomer was isolated and subjected to radical deoxygenation reaction to form epimeric products, while with the other isomer it underwent spontaneous 1,2-elimination to form a mixture of the two possible endocyclic olefins. Hydrogenolytic cleavage of the isoxazolidine rings of the purified products followed by insertion of 5-amino-4-chloropyrimidine moiety and purine ring construction smoothly afforded structurally unique carbanucleoside analogues. Various spectroscopic methods on the synthesized compounds and X-ray analysis on one important intermediate were used to assign the structures and stereochemistry of the products.
Resumo:
A key strategy to improve the skill of quantitative predictions of precipitation, as well as hazardous weather such as severe thunderstorms and flash floods is to exploit the use of observations of convective activity (e.g. from radar). In this paper, a convection-permitting ensemble prediction system (EPS) aimed at addressing the problems of forecasting localized weather events with relatively short predictability time scale and based on a 1.5 km grid-length version of the Met Office Unified Model is presented. Particular attention is given to the impact of using predicted observations of radar-derived precipitation intensity in the ensemble transform Kalman filter (ETKF) used within the EPS. Our initial results based on the use of a 24-member ensemble of forecasts for two summer case studies show that the convective-scale EPS produces fairly reliable forecasts of temperature, horizontal winds and relative humidity at 1 h lead time, as evident from the inspection of rank histograms. On the other hand, the rank histograms seem also to show that the EPS generates too much spread for forecasts of (i) surface pressure and (ii) surface precipitation intensity. These may indicate that for (i) the value of surface pressure observation error standard deviation used to generate surface pressure rank histograms is too large and for (ii) may be the result of non-Gaussian precipitation observation errors. However, further investigations are needed to better understand these findings. Finally, the inclusion of predicted observations of precipitation from radar in the 24-member EPS considered in this paper does not seem to improve the 1-h lead time forecast skill.
Resumo:
Abstract: Modulation of presynaptic voltage-dependent Ca+ channels is a major means of controlling neurotransmitter release. The CaV 2.2 Ca2+ channel subunit contains several inhibitory interaction sites for Gβγ subunits, including the amino terminal (NT) and I–II loop. The NT and I–II loop have also been proposed to undergo a G protein-gated inhibitory interaction, whilst the NT itself has also been proposed to suppress CaV 2 channel activity. Here, we investigate the effects of an amino terminal (CaV 2.2[45–55]) ‘NT peptide’ and a I–II loop alpha interaction domain (CaV 2.2[377–393]) ‘AID peptide’ on synaptic transmission, Ca2+ channel activity and G protein modulation in superior cervical ganglion neurones (SCGNs). Presynaptic injection of NT or AID peptide into SCGN synapses inhibited synaptic transmission and also attenuated noradrenaline-induced G protein modulation. In isolated SCGNs, NT and AID peptides reduced whole-cell Ca2+ current amplitude, modified voltage dependence of Ca2+ channel activation and attenuated noradrenaline-induced G protein modulation. Co-application of NT and AID peptide negated inhibitory actions. Together, these data favour direct peptide interaction with presynaptic Ca2+ channels, with effects on current amplitude and gating representing likely mechanisms responsible for inhibition of synaptic transmission. Mutations to residues reported as determinants of Ca2+ channel function within the NT peptide negated inhibitory effects on synaptic transmission, Ca2+ current amplitude and gating and G protein modulation. A mutation within the proposed QXXER motif for G protein modulation did not abolish inhibitory effects of the AID peptide. This study suggests that the CaV 2.2 amino terminal and I–II loop contribute molecular determinants for Ca2+ channel function; the data favour a direct interaction of peptides with Ca2+ channels to inhibit synaptic transmission and attenuate G protein modulation. Non-technical summary: Nerve cells (neurones) in the body communicate with each other by releasing chemicals (neurotransmitters) which act on proteins called receptors. An important group of receptors (called G protein coupled receptors, GPCRs) regulate the release of neurotransmitters by an action on the ion channels that let calcium into the cell. Here, we show for the first time that small peptides based on specific regions of calcium ion channels involved in GPCR signalling can themselves inhibit nerve cell communication. We show that these peptides act directly on calcium channels to make them more difficult to open and thus reduce calcium influx into native neurones. These peptides also reduce GPCR-mediated signalling. This work is important in increasing our knowledge about modulation of the calcium ion channel protein; such knowledge may help in the development of drugs to prevent signalling in pathways such as those involved in pain perception.
Resumo:
Mucosa-mimetic polymeric hydrogels have been developed to replace the use of animal tissues as substrates for characterising mucoadhesive properties of drug delivery systems.
Resumo:
The regio- and stereoselective photoinduced addition of N-carbomethoxymethylpyrrolidine to 5(S)-tert-butyldimethylsiloxymethyl-furan-2(5H)-one in the presence of benzophenone yields 3(R)-[N-(diphenylhydroxymethyl)carbo methoxymethylpyrrolidin-2′-yl]-4(S)-tert-butyldimethylsiloxymethyl)-butan-4-olides (epimeric at C-2′), and we report the X-ray structure of the major adduct together with its conversion into the 1-azabicyclo[4.3.0]-nonane ring system.
Resumo:
A quantitative assessment of Cloudsat reflectivities and basic ice cloud properties (cloud base, top, and thickness) is conducted in the present study from both airborne and ground-based observations. Airborne observations allow direct comparisons on a limited number of ocean backscatter and cloud samples, whereas the ground-based observations allow statistical comparisons on much longer time series but with some additional assumptions. Direct comparisons of the ocean backscatter and ice cloud reflectivities measured by an airborne cloud radar and Cloudsat during two field experiments indicate that, on average, Cloudsat measures ocean backscatter 0.4 dB higher and ice cloud reflectivities 1 dB higher than the airborne cloud radar. Five ground-based sites have also been used for a statistical evaluation of the Cloudsat reflectivities and basic cloud properties. From these comparisons, it is found that the weighted-mean difference ZCloudsat − ZGround ranges from −0.4 to +0.3 dB when a ±1-h time lag around the Cloudsat overpass is considered. Given the fact that the airborne and ground-based radar calibration accuracy is about 1 dB, it is concluded that the reflectivities of the spaceborne, airborne, and ground-based radars agree within the expected calibration uncertainties of the airborne and ground-based radars. This result shows that the Cloudsat radar does achieve the claimed sensitivity of around −29 dBZ. Finally, an evaluation of the tropical “convective ice” profiles measured by Cloudsat has been carried out over the tropical site in Darwin, Australia. It is shown that these profiles can be used statistically down to approximately 9-km height (or 4 km above the melting layer) without attenuation and multiple scattering corrections over Darwin. It is difficult to estimate if this result is applicable to all types of deep convective storms in the tropics. However, this first study suggests that the Cloudsat profiles in convective ice need to be corrected for attenuation by supercooled liquid water and ice aggregates/graupel particles and multiple scattering prior to their quantitative use.
Resumo:
In this paper, the statistical properties of tropical ice clouds (ice water content, visible extinction, effective radius, and total number concentration) derived from 3 yr of ground-based radar–lidar retrievals from the U.S. Department of Energy Atmospheric Radiation Measurement Climate Research Facility in Darwin, Australia, are compared with the same properties derived using the official CloudSat microphysical retrieval methods and from a simpler statistical method using radar reflectivity and air temperature. It is shown that the two official CloudSat microphysical products (2B-CWC-RO and 2B-CWC-RVOD) are statistically virtually identical. The comparison with the ground-based radar–lidar retrievals shows that all satellite methods produce ice water contents and extinctions in a much narrower range than the ground-based method and overestimate the mean vertical profiles of microphysical parameters below 10-km height by over a factor of 2. Better agreements are obtained above 10-km height. Ways to improve these estimates are suggested in this study. Effective radii retrievals from the standard CloudSat algorithms are characterized by a large positive bias of 8–12 μm. A sensitivity test shows that in response to such a bias the cloud longwave forcing is increased from 44.6 to 46.9 W m−2 (implying an error of about 5%), whereas the negative cloud shortwave forcing is increased from −81.6 to −82.8 W m−2. Further analysis reveals that these modest effects (although not insignificant) can be much larger for optically thick clouds. The statistical method using CloudSat reflectivities and air temperature was found to produce inaccurate mean vertical profiles and probability distribution functions of effective radius. This study also shows that the retrieval of the total number concentration needs to be improved in the official CloudSat microphysical methods prior to a quantitative use for the characterization of tropical ice clouds. Finally, the statistical relationship used to produce ice water content from extinction and air temperature obtained by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite is evaluated for tropical ice clouds. It is suggested that the CALIPSO ice water content retrieval is robust for tropical ice clouds, but that the temperature dependence of the statistical relationship used should be slightly refined to better reproduce the radar–lidar retrievals.