851 resultados para SUPERNOVA REMNANT
Resumo:
Central compact objects (CCOs) are X-ray sources lying close to the centre of supernova remnants, with inferred values of the surface magnetic fields significantly lower (≲1011 G) than those of standard pulsars. In this paper, we revise the hidden magnetic field scenario, presenting the first 2D simulations of the submergence and re-emergence of the magnetic field in the crust of a neutron star. A post-supernova accretion stage of about 10−4–10−3 M⊙ over a vast region of the surface is required to bury the magnetic field into the inner crust. When accretion stops, the field re-emerges on a typical time-scale of 1–100 kyr, depending on the submergence conditions. After this stage, the surface magnetic field is restored close to its birth values. A possible observable consequence of the hidden magnetic field is the anisotropy of the surface temperature distribution, in agreement with observations of several of these sources. We conclude that the hidden magnetic field model is viable as an alternative to the antimagnetar scenario, and it could provide the missing link between CCOs and the other classes of isolated neutron stars.
Resumo:
Context. Yellow hypergiants represent a short-lived evolutionary episode experienced by massive stars as they transit to and from a red supergiant phase. As such, their properties provide a critical test of stellar evolutionary theory, while recent observations unexpectedly suggest that a subset may explode as Type II supernovae. Aims. The galactic yellow hypergiant IRC +10420 is a cornerstone system for understanding this phase since it is the strongest post-RSG candidate known, has demonstrated real-time evolution across the Hertzsprung-Russell diagram and been subject to extensive mass loss. In this paper we report on the discovery of a twin of IRC +10420 - IRAS 18357-0604. Methods. Optical and near-IR spectroscopy are used to investigate the physical properties of IRAS 18357-0604 and also provide an estimate of its systemic velocity, while near- to mid-IR photometry probes the nature of its circumstellar environment. Results. These observations reveal pronounced spectral similarities between IRAS 18357-0604 and IRC +10420, suggesting comparable temperatures and wind geometries. IR photometric data reveals a similarly dusty circumstellar environment, although historical mass loss appears to have been heavier in IRC +10420. The systemic velocity implies a distance compatible with the red supergiant-dominated complex at the base of the Scutum Crux arm; the resultant luminosity determination is consistent with a physical association but suggests a lower initial mass than inferred for IRC +10420 (≲20 M⊙ versus ~40 M⊙). Evolutionary predictions for the physical properties of supernova progenitors derived from ~18–20 M⊙ stars – or ~12–15 M⊙ stars that have experienced enhanced mass loss as red supergiants – compare favourably with those of IRAS 18357-0604, which in turn appears to be similar to the the progenitor of SN2011dh; it may therefore provide an important insight into the nature of the apparently H-depleted yellow hypergiant progenitors of some Type IIb SNe.
Resumo:
We find that the formation of MWC 656 (the first Be binary containing a black hole) involves a common envelope phase and a supernova explosion. This result supports the idea that a rapidly rotating Be star can emerge out of a common envelope phase, which is very intriguing because this evolutionary stage is thought to be too fast to lead to significant accretion and spin up of the B star. We predict ∼10–100 of B-BH binaries to currently reside in the Galactic disc, among which around 1/3 contain a Be star, but there is only a small chance to observe a system with parameters resembling MWC 656. If MWC 656 is representative of intrinsic Galactic Be-BH binary population, it may indicate that standard evolutionary theory needs to be revised. This would pose another evolutionary problem in understanding black hole (BH) binaries, with BH X-ray novae formation issue being the prime example. Future evolution of MWC 656 with an ∼5 M⊙ BH and with an ∼13 M⊙ main-sequence companion on an ∼60 d orbit may lead to the formation of a coalescing BH–NS (neutron star) system. The estimated Advanced LIGO/Virgo detection rate of such systems is up to ∼0.2 yr−1. This empirical estimate is a lower limit as it is obtained with only one particular evolutionary scenario, the MWC 656 binary. This is only a third such estimate available (after Cyg X-1 and Cyg X-3), and it lends additional support to the existence of so far undetected BH–NS binaries.
Resumo:
The observation of several neutron stars in the centre of supernova remnants and with significantly lower values of the dipolar magnetic field than the average radio-pulsar population has motivated a lively debate about their formation and origin, with controversial interpretations. A possible explanation requires the slow rotation of the protoneutron star at birth, which is unable to amplify its magnetic field to typical pulsar levels. An alternative possibility, the hidden magnetic field scenario, considers the accretion of the fallback of the supernova debris on to the neutron star as responsible for the submergence (or screening) of the field and its apparently low value. In this paper, we study under which conditions the magnetic field of a neutron star can be buried into the crust due to an accreting, conducting fluid. For this purpose, we consider a spherically symmetric calculation in general relativity to estimate the balance between the incoming accretion flow and the magnetosphere. Our study analyses several models with different specific entropy, composition, and neutron star masses. The main conclusion of our work is that typical magnetic fields of a few times 1012 G can be buried by accreting only 10−3–10−2 M⊙, a relatively modest amount of mass. In view of this result, the central compact object scenario should not be considered unusual, and we predict that anomalously weak magnetic fields should be common in very young (< few kyr) neutron stars.
Resumo:
For voice and piano.
Resumo:
For voice and piano.
Resumo:
ATCA H I and radio continuum observations of the peculiar southern galaxy IC 2554 and its surroundings reveal typical signatures of an interacting galaxy group. We detected a large H I cloud between IC 2554 and the elliptical galaxy NGC 3136B. The gas dynamics in IC 2554 itself, which is sometimes described as a colliding pair, are surprisingly regular, whereas NGC 3136B was not detected. The H I cloud, which emerges from IC 2554 as a large arc-shaped plume, has a size of similar to30 kpc, larger than that of IC 2554. The total H I mass of the IC 2554 system is similar to2 x 10(9) M., one-third of which resides in the H I cloud. It is possible that tidal interaction between IC 2554 and NGC 3136B caused this spectacular H I cloud, but the possibility of IC 2554 being a merger remnant is also discussed. We also detected H I gas in the nearby galaxies ESO 092-G009 and RKK 1959 and an associated H I cloud, ATCA J1006-6710. Together they have an H I mass of similar to4.6 x 10(8) M-.. Another new H I source, ATCA J1007-6659, with an H I mass of only similar to2.2 x 10(7) M. was detected roughly between IC 2554 and ESO 092-G009 and corresponds to a face-on low surface brightness dwarf galaxy. Star formation is evident only in the galaxy IC 2554 with a rate of similar to4 M. yr(-1).
Resumo:
We have discovered a new type of galaxy in the Fornax Cluster: 'ultra-compact' dwarfs (UCDs). The UCDs are unresolved in ground-based imaging and have spectra typical of old stellar systems. Although the UCDs resemble overgrown globular clusters, based on VLT UVES echelle spectroscopy, they appear to be dynamically distinct systems with higher internal velocity dispersions and M/L ratios for a given luminosity than Milky Way or M31 globulars. Our preferred explanation for their origin is that they are the remnant nuclei of dwarf elliptical galaxies which have been tidally stripped, or 'threshed' by repeated encounters with the central cluster galaxy, NGC1399. If correct, then tidal stripping of nucleated dwarfs to form UCDs may, over a Hubble time, be an important source of the plentiful globular cluster population in the halo of NGC1399, and, by implication, other cD galaxies. In this picture, the dwarf elliptical halo contents, up to 99% of the original dwarf luminosity, contribute a significant fraction of the populations of intergalactic stars, globulars, and gas in galaxy clusters.
Resumo:
Queensland, Australia, has a proud pastoral history; however, the private and social benefits of continued woodland clearing for pasture development are unlikely to be as pronounced as they had been in the past. The environmental benefits of tree retention in and regions of the State are now better appreciated and market opportunities have arisen for the unique timbers of western Queensland. A financial model is developed to facilitate a comparison of the private profitability of small-scale timber production from remnant Acacia woodlands against clearing for pasture development in the Mulga Lands and Desert Uplands bioregions of western Queensland. Four small-scale timber production scenarios, which differ in target markets and the extent of processing (value-adding), are explored within the model. Each scenario is examined for the cases where property rights to the timber are vested with the timber processor, and where royalties are payable. For both cases of resource ownership, at least one scenario generates positive returns from timber production, and exceeds the net farm income per hectare for an average grazing property in the study regions over the period 1989-1990 to 2000-2001. The net present value per hectare of selectively harvesting and processing high-value clearwood from remnant western Queensland woodlands is found to be greater than clearing for grazing. (C) 2003 Elsevier B.V. All rights reserved.