978 resultados para STELLAR RADIATIVE ZONES
Resumo:
Results from Ocean Drilling Program sites 1121-1124 show the Eastern New Zealand Oceanic Sedimentary System (ENZOSS) evolved in response to: (1) the inception of the circum-Antarctic circulation, (2) orbital and nonorbital regulation of the global thermohaline flow, and (3) development of the New Zealand plate boundary. ENZOSS began in the early Oligocene following opening of the Tasmanian gateway and inception of the ancestral Antarctic Circumpolar Current (ACC) and SW Pacific Deep Western Boundary Current (DWBC). Widespread erosion, marked by the Marshall Paraconformity, was followed by extensive drift formation in the late Oligocene- early Miocene. Alternating nannofossil chalk and nannofossil-rich mud deposited in response to 41-kyr orbital regulation of the abyssal circulation, with the mudstones representing times of increased inflow of corrosive southernsource waters. Drift deposition at the deepest sites was interrupted by bouts of erosion coincident with Mi 1-5 isotopic events signifying expansions of the East Antarctic Ice Sheet and enhanced bottom water formation. By late Miocene times, the basic ENZOSS was established. South of Bounty Trough, the energetic ACC instigated an erosional/low depositional regime. To the north, where the DWBC prevailed, orbitally regulated drift deposition continued. Increased convergence at the New Zealand plate boundary enhanced the terrigenous supply, but little of this sediment reached the deep ENZOSS as the three main sediment conduits - Solander, Bounty and Hikurangi channels - had not fully developed. The Plio-Pleistocene heralded a change from a carbonate- to terrigenous-dominant supply caused by interception of the DWBC by the three channels (~1.6 Ma for Bounty and Hikurangi, time of Solander interception unknown). The Solander and Bounty fans, and Hikurangi Fan-drift systems formed, and drifts downstream of those systems, received terrigenous detritus. Supply increased with accelerating uplift along the plate boundary, but delivery to the DWBC was regulated by eustatic fluctuations of sea level. Times of maximum supply to all three channels was during glacial lowstands whereas the supply either ceased (Bounty, Solander), or reduced (Hikurangi) in highstands. In glacial times, sediment was entrained by a DWBC invigorated by an increased input of Antarctic bottom water. The ACC also accelerated under strengthened glacial winds. Thus, glacials were times of optimum sediment supply to ENZOSS depocentres where depositional rates were 2-3 times more than interglacial rates.
Resumo:
To understand the adaptation of euphausiid (krill) species to oxygen minimum zones (OMZ), respiratory response and stress experiments combining hypoxia/reoxygenation exposure with warming were conducted. Experimental krill species were obtained from the Antarctic (South Georgia area), the Humboldt Current system (HCS, Chilean coast), and the Northern California Current system (NCCS, Oregon). Euphausia mucronata from the HCS shows oxyconforming or oxygen partial pressure (pO2)-dependent respiration below 80% air saturation (18 kPa). Normoxic subsurface oxygenation in winter posed a "high oxygen stress" for this species. The NCCS krill, Euphausia pacifica, and the Antarctic krill, Euphausia superba maintain respiration rates constant down to low critical pO2 values of 6 kPa (30% air saturation) and 11 kPa (55% air saturation), respectively. Antarctic krill had the lowest antioxidant enzyme activities, but the highest concentrations of the molecular antioxidant glutathione (GSH) and was not affected by 6 h exposure to moderate hypoxia. Temperate krill species had higher SOD (superoxide dismutase) values in winter than in summer, which relate to higher winter metabolic rate (E. pacifica). In all species, antioxidant enzyme activities remained constant during hypoxic exposure at habitat temperature. Warming by 7°C above habitat temperature in summer increased SOD activities and GSH levels in E. mucronata (HCS), but no oxidative damage occurred. In winter, when the NCCS is well mixed and the OMZ is deeper, +4°C of warming combined with hypoxia represents a lethal condition for E. pacifica. In summer, when the OMZ expands upwards (100 m subsurface), antioxidant defences counteracted hypoxia and reoxygenation effects in E. pacifica, but only at mildly elevated temperature (+2°C). In this season, experimental warming by +4°C reduced antioxidant activities and the hypoxia combination again caused mortality of exposed specimens. We conclude that a climate change scenario combining warming and hypoxia represents a serious threat to E. pacifica and, as a consequence, NCCS food webs.