903 resultados para SILICATE CLAY NANOCOMPOSITES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of compaction pressure, compaction water content and type of compaction (static or dynamic) on subsequent soil behaviour during wetting and isotropic loading has been investigated by conducting controlled-suction tests on samples of unsaturated compacted speswhite kaolin. The results are interpreted within the context of an elastoplastic framework for unsaturated soils, to examine which compaction-induced effects can be explained simply by variation in the initial state of the soil and which require that soils produced by different compaction procedures are modelled as fundamentally different materials. The compaction pressure influences initial state, by affecting the initial position of the yield surface, but it also influences, to a limited degree, the positions of the normal compression lines for different values of suction. The compaction water content influences the initial suction, but also has a significant influence (greater than does compaction pressure) on the positions of the normal compression lines. A change from static to dynamic compaction has no significant effect on subsequent behaviour

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of compaction pressure, compaction water content and type of compaction (static or dynamic) on subsequent soil behaviour was investigated by conducting controlled-suction triaxial tests on samples of unsaturated compacted speswhite kaolin. Compaction pressure influences initial state, by determining the initial position of the yield surface, thus affecting, among other things, the shape of stress–strain curves during shearing. Compaction pressure also influences, to a limited degree, the positions of the normal compression lines for different values of suction, but it has no effect on critical state relationships. The effect of compaction pressure can probably be modelled solely in terms of initial state if an anisotropic elastoplastic model incorporating rotational hardening is employed, whereas the parameters defining the slopes and intercepts of the normal compression lines for different values of suction require adjustment with variation of compaction pressure if a conventional isotropic hardening elastoplastic model is employed. Compaction water content influences the initial suction, but also has a substantial influence on normal compression lines and a noticeable effect on the volumetric behaviour at critical states. It is likely that soil samples compacted at different water contents will have to be modelled as different materials, irrespective of whether an isotropic or anisotropic hardening elastoplastic model is employed. A change from static to dynamic compaction has no significant effect on subsequent behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supercritical carbon dioxide (scCO(2)) is used to prepare novel silica aerogel composites containing nanoparticles of palladium. The material produced has been found to exhibit a Pd loading of 8% by wt. The particles deposited fit within two discrete size ranges of

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyamide and polystyrene particles were coated with titanium dioxide films by atomic layer deposition (ALD) and then melt-compounded to form polymer nanocomposites. The rheological properties of the ALD-created nanocomposite materials were characterized with a melt flow indexer, a melt flow spiral mould, and a rotational rheometer. The results suggest that the melt flow properties of polyamide nanocomposites were markedly better than those of pure polyamide and polystyrene nanocomposites. Such behavior was shown to originate in an uncontrollable decrease in the polyamide molecular weight, likely affected by a high thin-film impurity content, as shown in gel permeation chromatography (GPC) and scanning electron microscope (SEM) equipped with an energy-dispersive spectrometer. Transmission electron microscope image showed that a thin film grew on both studied polymer particles, and that subsequent melt-compounding was successful, producing well dispersed ribbon-like titanium dioxide with the titanium dioxide filler content ranging from 0.06 to 1.12wt%. Even though we used nanofillers with a high aspect ratio, they had only a minor effect on the tensile and flexural properties of the polystyrene nanocomposites. The mechanical behavior of polyamide nanocomposites was more complex because of the molecular weight degradation. Our approach here to form polymeric nanocomposites is one way to tailor ceramic nanofillers and form homogenous polymer nanocomposites with minimal work-related risks in handling powder form nanofillers. However, further research is needed to gauge the commercial potential of ALD-created nanocomposite materials. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism whereby foundation loading is transmitted through the column has received little attention from researchers. This paper reports on some interesting findings obtained from a laboratory-based model study in respect of this issue. The model tests were carried out on samples of soft clay, 300 mm in diameter and 400 mm high. The samples were reinforced with fully penetrating stone columns, of three different diameters, made of crushed basalt. Four pressure cells were located along each stone column. The 60 mm diameter footing used in the model was supported on a clay bed reinforced with a stone column and subjected to foundation loading under drained conditions. The results show that the dissipation of excess pore water pressure developed during the initial application of total stresses, when the foundation was subjected to no loading, generated considerable stresses within the column, and that this was directly attributable to the development of negative skin friction. The pressure distributions in the column during foundation loading showed some complex behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposites of poly(ethylene terephthalate) PET with a partially synthetic fluoromica were prepared by melt mixing and extruded into sheet and subjected to large-scale biaxial stretching. Transmission electron microscopy (TEM) analysis of the mica tactoids showed that biaxial stretching had caused the tactoids to be more orientated and with improved exfoliation. The moduli of the nanocomposites were enhanced with increasing mica loading and the reinforcement effect was higher when the stretch ratio was 2 or 2.5, accommodated by having more aligned tactoids and reduced agglomeration. Enhancement in modulus was less pronounced for a stretch ratio of 3. Storage modulus was enhanced more significantly above the glass transition temperature. The barrier properties were enhanced by addition of mica before and after stretching. The Halpin-Tsai theory underpredicted the relative modulus of the PET nanocomposites, whereas the Nielsen model over-predicted the relative permeability. POLYM. ENG. SCI., 2012. (c) 2011 Society of Plastics Engineers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides an overview of research on modelling of the structure–property interactions of polymer nanocomposites in manufacturing processes (stretch blow moulding and thermoforming) involving large-strain biaxial stretching of relatively thin sheets, aimed at developing computer modelling tools to help producers of materials, product designers and manufacturers exploit these materials to the full, much more quickly than could be done by experimental methods alone. The exemplar systems studied are polypropylene and polyester terephalate, with nanoclays. These were compounded and extruded into 2mm thick sheet which was then biaxially stretched at 155°C for the PP and 90 to 100°C for the PET. Mechanical properties were determined for the unstretched and stretched materials, together with TEM and XRD studies of structure. Multi-scale modelling, using representative volume elements is used to model the properties of these products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While a significant number of geotechnical structures are subjected to static loading, many, such as avement subgrade, also are subjected to cyclic or dynamic loading. While the performance of saturated soils under repeated, cyclic or dynamic loading conditions is still a topic of research, similar interests are growing when the soilcondition is unsaturated. This paper examines the performance of unsaturated soils under repeated loading. As part of the research, a triaxial system was developed which incorporates small strain measurements using Hall-effect transducers, in addition to suction measurements taken using a psychrometer. Tests were conducted on samples of kaolin under constant water mass conditions. The results address the effects of compaction effort and water content at the time of compaction on the overall performance of unsaturated soils, under different amplitudes of loading and different confining pressures. The results show that suction in the sample reduced with increasing number of loading cycles of the same magnitude. The resilient modulus initially increased with increasing water content up to approximately optimum water content, and substantially reduced with further increase in water content. Key Words: suction, resilient modulus, subgrade, repeated loading, small strain measurements, compaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characterisation of soils for civil engineering purposes depends on removing sufficiently high-quality samples from the ground. Accurate evaluation of sample quality is therefore important if reliable design parameters are to be determined. This paper describes the use of unconfined shear wave velocity (V s) and suction (u r) measurements to assess sample quality rapidly in soft clay. Samples of varying quality from three well-characterised soft clay sites are initially assessed using conventional techniques, and their results compared with V s and u r measurements performed on the same samples. It is observed that the quality of samples indicated by these measurements is very similar to those inferred from traditional disturbance measures, with V s being the more reliable indicator. A tentative empirically derived criterion, based on samples tested in this project, is proposed to quantify sample disturbance combining both V s and u r measurements. Further work using this criterion on different materials is important so as to test its usefulness.