994 resultados para SIGHT VELOCITY DISTRIBUTIONS
Resumo:
Application of a high resolution high performance liquid chromatography-mass spectrometry method to the study of a microbial mat system has permitted the identification of a greater number of pigments derived from green bacteria than reported in a previous study. Although the green bacteria found in the mat were identified as Chloroflexus-like, bacteriochlorophylls and bacteriophaeophytins c that can be attributed to Chloroflexaceae on the basis of literature reports account for less than 10% of the pigments derived from green bacteria in the mat. Analysis of the bacteriochlorophylls and bacteriophaeophytins c and d using atmospheric pressure chemical ionisation-liquid chromatography-tandem mass spectrometry reveals complex depth profiles, signalling inputs from a number of organisms. The pigment compositions provide evidence for green bacteria living in close proximity to the living cyanobacterial mat. Depth profiles of pigments derived from green, purple and cyanobacteria indicate that the remnants of mats present in the deeper part of the section contain a record dominated by signatures from anoxygenic photoautotrophs.
Resumo:
Ternary and binary gradient systems have been developed for the high-performance liquid chromatographic analysis of complex pigment distributions typical of natural samples. Improved chromatographic resolution reveals significantly more pigment components in extracts from a sediment (Priest Pot, Cumbria, UK), a microbial mat (les Salines de la Trinital, South Catalonia, Spain) and a culture (C. phaeobacteroides) including novel bacteriochlorophyll derivatives. The methods developed are directly suited to LC–MS analysis and the automated acquisition of MS/MS data for pigments.
Resumo:
Thermocouples are one of the most popular devices for temperature measurement due to their robustness, ease of manufacture and installation, and low cost. However, when used in certain harsh environments, for example, in combustion systems and engine exhausts, large wire diameters are required, and consequently the measurement bandwidth is reduced. This article discusses a software compensation technique to address the loss of high frequency fluctuations based on measurements from two thermocouples. In particular, a difference equation sDEd approach is proposed and compared with existing methods both in simulation and on experimental test rig data with constant flow velocity. It is found that the DE algorithm, combined with the use of generalized total least squares for parameter identification, provides better performance in terms of time constant estimation without any a priori assumption on the time constant ratios of the thermocouples.
Resumo:
The distributions of molecules in the inner regions of a protostellar disk are presented. These were calculated using an uncoupled chemical/dynamical model, with a numerical integration of the vertical disk structure. A comparison between models with and without the effects of X-ray ionisation is made, and molecules are identified which are good tracers of the ionisation level in this part of the disk, notably CN and C_2H. In the region considered in this paper (r
Resumo:
We have examined the ability of observers to parse bimodal local-motion distributions into two global motion surfaces, either overlapping (yielding transparent motion) or spatially segregated (yielding a motion boundary). The stimuli were random dot kinematograms in which the direction of motion of each dot was drawn from one of two rectangular probability distributions. A wide range of direction distribution widths and separations was tested. The ability to discriminate the direction of motion of one of the two motion surfaces from the direction of a comparison stimulus was used as an objective test of the perception of two discrete surfaces. Performance for both transparent and spatially segregated motion was remarkably good, being only slightly inferior to that achieved with a single global motion surface. Performance was consistently better for segregated motion than for transparency. Whereas transparent motion was only perceived with direction distributions which were separated by a significant gap, segregated motion could be seen with abutting or even partially overlapping direction distributions. For transparency, the critical gap increased with the range of directions in the distribution. This result does not support models in which transparency depends on detection of a minimum size of gap defining a bimodal direction distribution. We suggest, instead, that the operations which detect bimodality are scaled (in the direction domain) with the overall range of distributions. This yields a flexible, adaptive system that determines whether a gap in the direction distribution serves as a segmentation cue or is smoothed as part of a unitary computation of global motion.