1000 resultados para SERVICE
Resumo:
Reef fishes are conspicuous and essential components of coral reef ecosystems and economies of southern Florida and the United States Virgin Islands (USVI). Throughout Florida and the USVI, reef fish are under threat from a variety of anthropogenic and natural stressors including overfishing, habitat loss, and environmental changes. The South Florida/Caribbean Network (SFCN), a unit of the National Park Service (NPS), is charged with monitoring reef fishes, among other natural and cultural resources, within six parks in the South Florida - Caribbean region (Biscayne National Park, BISC; Buck Island Reef National Monument, BUIS; Dry Tortugas National Park, DRTO; Everglades National Park, EVER; Salt River Bay National Historic Park and Ecological Preserve, SARI; Virgin Islands National Park, VIIS). Monitoring data is intended for park managers who are and will continue to be asked to make decisions to balance environmental protection, fishery sustainability and park use by visitors. The range and complexity of the issues outlined above, and the need for NPS to invest in a strategy of monitoring, modeling, and management to ensure the sustainability of its precious assets, will require strategic investment in long-term, high-precision, multispecies reef fish data that increases inherent system knowledge and reduces uncertainty. The goal of this guide is to provide the framework for park managers and researchers to create or enhance a reef fish monitoring program within areas monitored by the SFCN. The framework is expected to be applicable to other areas as well, including the Florida Keys National Marine Sanctuary and Virgin Islands Coral Reef National Monument. The favored approach is characterized by an iterative process of data collection, dataset integration, sampling design analysis, and population and community assessment that evaluates resource risks associated with management policies. Using this model, a monitoring program can adapt its survey methods to increase accuracy and precision of survey estimates as new information becomes available, and adapt to the evolving needs and broadening responsibilities of park management.
Resumo:
The Biogeography Branch’s Sampling Design Tool for ArcGIS provides a means to effectively develop sampling strategies in a geographic information system (GIS) environment. The tool was produced as part of an iterative process of sampling design development, whereby existing data informs new design decisions. The objective of this process, and hence a product of this tool, is an optimal sampling design which can be used to achieve accurate, highprecision estimates of population metrics at a minimum of cost. Although NOAA’s Biogeography Branch focuses on marine habitats and some examples reflects this, the tool can be used to sample any type of population defined in space, be it coral reefs or corn fields.
Resumo:
The Gap Analysis of Marine Ecosystem Data project is a review of available geospatial data which can assist in marine natural resource management for eight park units. The project includes the collection of geospatial information and its incorporation in a single consistent geodatabase format. The project also includes a mapping portal which can be seen at: http://ccma.nos.noaa.gov/explorer/gapanalysis/gap_analysis.html In addition to the collection of geospatial information and mapping portal we have conducted a gap analysis of a standard suite of available information for managing marine resources. Additional gap were identified by interviewing park service staff.
Resumo:
The major task in hand at the beginning of the year was the Deep Water Fishing Survey in Uganda waters. This has continued throughout the year with varying, lm generally, not particularly encouraging, results. A full account is given in paras. 33 to 67 of this Report. The new method of marking Tilapia was introduced at the beginning of the year, and, apart from delays resulting from the delivery position of marking materials, has gone ahead steadily. The improvement in results expected from this method was already evident after only nine months' work, and information has been obtained which never was-nor could have been-obtained by the old method of marking. A full account is given in paras 114 to 133.
Resumo:
Military platforms have exceptionally long lifecycles and given the state of defense budgets there is a significant trend in sustaining the operational capability of legacy platforms for much greater periods than originally designed. In the context of through-life management, one of the key questions is how to manage the flow of technology for platform modernization during the in-service phase of the lifecycle? Inserting technological innovations in-service is achieved through technology insertion processes. Technology insertion is the pre-eminent activity for both maintaining and enhancing the functional capability of a platform especially given the likely changes in future military operations, the pace of change in technology and with the increasing focus on lifecycle cost reduction. This chapter provides an introduction to technology insertion together with an overview of the key issues that practitioners are faced with. As an aid to planning technology insertion projects, a decision-support framework is presented. © 2010 Springer-Verlag Berlin Heidelberg.