986 resultados para SEDIMENTARY ORGANIC-MATTER


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of the palynofacies and miospore thermal alteration indices (TAI) of sediments from ODP Site 808 in the Nankai Trough was undertaken to determine (1) the source, depositional environment, and diagenesis of organic matter in the accreted sediments, and (2) the thermal structure and history of the prism and its relationship to fluid flow. Using the Hartax classification system, two palynofacies were recognized in the sedimentary sequence. Facies 1 occurs within the upper 600 m of trench-wedge turbidites (sedimentation rate > 1 km/m.y.) and contains >50% inertite particles. The rest of the assemblage is dominated by well-preserved phytoclasts and contains small amounts of poorly preserved phytoclasts and well-preserved scleratoclasts. Facies 2 occurs within the Shikoku Basin hemipelagites (600-1300 m below seafloor; sedimentation rate <150 m/m.y.) and contains over two-thirds inertite particles. The rest of the assemblage is dominated by poorly preserved phytoclasts. Miospores and marine phytoplankton compose only a small percentage of both palynofacies. Degraded organic matter is most noticeable in Facies 2, whereas its presence in Facies 1 is overshadowed by the high influx of well-preserved primary organic matter. Most of the degraded organic matter and inertite is interpreted to be reworked. Some of the degraded organic matter may be primary, and may have experienced more biodegradation and thermal alteration in Facies 2 than in Facies 1. TAI values indicate an immature stage of organic maturation (< 2) down to about 900 mbsf. Below this, samples show an increase with depth to a mature stage, reaching peak levels of about 3 just above basement. Samples from within the thrust fault and decollement zones do not show levels of maturity significantly greater than those of surrounding samples, leaving uncertain whether hot fluids have migrated along these fault boundaries in the past.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of amino acids in the Precambrian shungite rocks of Karelia showed that their contents vary within 25-89 µg/g depending on proportions between shungite and mineral components. It was established that the amino acids exhibit an excess of L-enantiomers. In the shungite rocks, they form organomineral complexes with silica and aluminosilicates, being built in the globular structure of shungite matter. There are several sources of amino acids in shungites: secondary synthesis, microbial pollution, and original amino acids of organic matter in shungite rocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flux of sediment and organic carbon from continents to the coastal ocean is an important factor governing organic burial in coastal sediments, and these systems preserve important records of environmental and biogeochemical conditions during past global change events. Burial of organic materials in coastal systems can be promoted by chemical resilience or through protection by association with mineral surfaces, but the role and influence of these processes on organic records from ancient sediments is poorly known. We studied sediment and organic matter burial as particulate organic matter (POM) and mineral-bound organic matter (MOM) in near-shore marine sediments from the Wilson Lake core (New Jersey, USA) that span the Paleocene-Eocene thermal maximum (PETM), a climatic perturbation 55.9 Myr ago. Our results show that distinct POM and MOM fractions can be isolated from sediments. Both fractions appear to be dominated by terrestrial material, but POM consisted primarily of recently synthesized material whereas MOM included a significant fraction of pre-aged organic matter from soils or ancient sediments. Variation in organic burial through the PETM is associated with changes in inorganic nitrogen burial, clay mineralogy, and clastic grain size that we associate with enhanced continental weathering, erosion and redeposition of ancient kaolinites, and eustatic sea level variation, respectively. These results provide a new perspective on factors governing carbon burial and carbon isotope records in ancient marine margin settings and offer information on rate and phasing of late Paleocene/early Eocene Earth system changes that may constrain interpretations of the cause of the PETM climate change event.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined sediments from Neogene and Quaternary sections of the Benguela and Oman upwelling systems (DSDP Site 532, ODP Sites 723 and 722) to determine environmental and geochemical factors which control and limit pyrite formation in organic-carbon-rich marine sediments. Those samples from the upwelling sites, which contained low to moderate concentrations of total organic carbon (0.7%-3%), had C/S ratios typical of normal marine sediments, i.e., around 2.8. In these sediments, TOC availability probably limited pyrite formation. Results that do not conform with accepted models were found for the sediments high in TOC (3^0-12.4%). The organic matter was of marine origin and contained considerable pyrolytic hydrocarbons, a fact that we take as a sign of low degradation, yet significant concentrations of dissolved sulfate coexisted with it (> 5 mmol/L in the case of Sites 532 and 723). Detrital iron was probably not limiting in either case, because the degree of pyritization was always less than 0.65. Therefore, controls on sulfate reduction and pyrite formation in the organic matter-rich sediments do not appear to conform simply to generally accepted diagenetic models. The data from these thermally immature, old, and organic-rich marine sediments imply that (1) the total reduced sulfur content of organic-rich marine upwelling sediments rarely exceeds an approximate boundary of 1.5% by weight, (2) the C/S ratio of these sediments is not constant and usually much higher than the empirical values proposed for marine sediments. We conclude that sedimentary pyrite formation in upwelling sediments is limited by an as yet unknown factor, and that caution is advised in using C/S ratios and C vs. S diagrams in paleoenvironmental reconstructions for organic-rich sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern erosion of the Himalaya, the world's largest mountain range, transfers huge dissolved and particulate loads to the ocean. It plays an important role in the long-term global carbon cycle, mostly through enhanced organic carbon burial in the Bengal Fan. To understand the role of past Himalayan erosion, the influence of changing climate and tectonic on erosion must be determined. Here we use a 12 Myr sedimentary record from the distal Bengal Fan (Deep Sea Drilling Project Site 218) to reconstruct the Mio-Pliocene history of Himalayan erosion. We use carbon stable isotopes (d13C) of bulk organic matter as paleo-environmental proxy and stratigraphic tool. Multi-isotopic - Sr, Nd and Os - data are used as proxies for the source of the sediments deposited in the Bengal Fan over time. d13C values of bulk organic matter shift dramatically towards less depleted values, revealing the widespread Late Miocene (ca. 7.4 Ma) expansion of C4 plants in the basin. Sr, Nd and Os isotopic compositions indicate a rather stable erosion pattern in the Himalaya range during the past 12 Myr. This supports the existence of a strong connection between the southern Tibetan plateau and the Bengal Fan. The tectonic evolution of the Himalaya range and Southern Tibet seems to have been unable to produce large re-organisation of the drainage system. Moreover, our data do not suggest a rapid change of the altitude of the southern Tibetan plateau during the past 12 Myr. Variations in Sr and Nd isotopic compositions around the late Miocene expansion of C4 plants are suggestive of a relative increase in the erosion of High Himalaya Crystalline rock (i.e. a simultaneous reduction of both Transhimalayan batholiths and Lesser Himalaya relative contributions). This could be related to an increase in aridity as suggested by the ecological and sedimentological changes at that time. A reversed trend in Sr and Nd isotopic compositions is observed at the Plio-Pleistocene transition that is likely related to higher precipitation and the development of glaciers in the Himalaya. These almost synchronous moderate changes in erosion pattern and climate changes during the late Miocene and at the Plio-Pleistocene transition support the notion of a dominant control of climate on Himalayan erosion during this time period. However, stable erosion regime during the Pleistocene is suggestive of a limited influence of the glacier development on Himalayan erosion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to assess whether the oxygen-minimum zone (OMZ) in the Arabian sea has an effect on the preservation and composition of organic matter in surface sediments we investigated samples from three different transects on the Pakistan continental margin across the OMZ. In addition to determining the total amount of organic carbon (TOC), we analyzed the extractable lipids by gas chromatography, combined gas chromatography/mass spectrometry, and compound-specific stable carbon isotope measurements. The extractable lipids are dominated by marine organic matter as indicated by the abundance of lipids typical of marine biota and by the bulk and molecular isotopic composition. Sediments from within the OMZ are enriched in organic carbon and in several extractable lipids (i.e. phytol, n-alcohols, total sterols, n-C35 alkane) relative to stations above and below this zone. Other lipid concentrations, such as those of total n-fatty acids and total n-alkanes fail to show any relation to the OMZ. Only a weak correlation of TOC with mineral surface area was found in sediments deposited within the OMZ. In contrast, sediments from outside the OMZ do not show any relationship between TOC and surface area. Among the extractable lipids, only the n-alkane concentration is highly correlated with surface area in sediments from the Hab and Makran transects. In sediments from outside the OMZ, the phytol and sterol concentrations are also weakly correlated with mineral surface area. The depositional environment of the Indus Fan offers the best conditions for an enhanced preservation of organic matter. The OMZ, together with the undisturbed sedimentation at moderate rates, seems to be mainly responsible for the high TOC values in this area. Overall, the type of organic matter and its lability toward oxic degradation, the mineral surface area, the mineral composition, and possibly the secondary productivity by (sedimentary) bacteria also appear to have an influence on organic matter accumulation and composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amounts, sources and relative ages of inorganic and organic carbon pools were assessed in eight headwater streams draining watersheds dominated by either forest, pasture, cropland or urban development in the lower Chesapeake Bay region (Virginia, USA). Streams were sampled at baseflow conditions six different times over 1 year. The sources and ages of the carbon pools were characterized by isotopic (δ13C and ∆14C) analyses and excitation emission matrix fluorescence with parallel factor analysis (EEM–PARAFAC). The findings from this study showed that human land use may alter aquatic carbon cycling in three primary ways. First, human land use affects the sources and ages of DIC by controlling different rates of weathering and erosion. Relative to dissolved inorganic carbon (DIC) in forested streams which originated primarily from respiration of young, 14C-enriched organic matter (OM; δ13C = −22.2 ± 3 ‰; ∆14C = 69 ± 14 ‰), DIC in urbanized streams was influenced more by sedimentary carbonate weathering (δ13C = −12.4 ± 1 ‰; ∆14C = −270 ± 37 ‰) and one of pasture streams showed a greater influence from young soil carbonates (δ13C = −5.7 ± 2.5 ‰; ∆14C = 69 ‰). Second, human land use alters the proportions of terrestrial versus autochthonous/microbial sources of stream water OM. Fluorescence properties of dissolved OM (DOM) and the C:N of particulate OM (POM) suggested that streams draining human-altered watersheds contained greater relative contributions of DOM and POM from autochthonous/microbial sources than forested streams. Third, human land uses can mobilize geologically aged inorganic carbon and enable its participation in contemporary carbon cycling. Aged DOM (∆14C = −248 to −202 ‰, equivalent14C ages of 1,811–2,284 years BP) and POM (∆14C = −90 to −88 ‰, 14C ages of 669–887 years BP) were observed exclusively in urbanized streams, presumably a result of autotrophic fixation of aged DIC (−297 to −244 ‰, 14C age = 2,251–2,833 years BP) from sedimentary shell dissolution and perhaps also watershed export of fossil fuel carbon. This study demonstrates that human land use may have significant impacts on the amounts, sources, ages and cycling of carbon in headwater streams and their associated watersheds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present high-resolution records of sedimentary nitrogen (d15Nbulk) and carbon isotope ratios (d13Cbulk) from piston core SO201-2-85KL located in the western Bering Sea. The records reflect changes in surface nitrate utilization and terrestrial organic matter contribution in submillennial resolution that span the last 180 kyr. The d15Nbulk record is characterized by a minimum during the penultimate interglacial indicating low nitrate utilization (~62-80%) despite the relatively high export production inferred from opal concentrations along with a significant reduction in the terrestrial organic matter fraction (mterr). This suggests that the consumption of the nitrate pool at our site was incomplete and even more reduced than today (~84%). d15Nbulk increases from Marine Isotope Stage (MIS) 5.4 and culminates during the Last Glacial Maximum, which indicates that nitrate utilization in the Bering Sea was raised during cold intervals (MIS 5.4, 5.2, 4) and almost complete during MIS 3 and 2 (~93-100%). This is in agreement with previous hypotheses suggesting that stronger glacial stratification reduced the nutrient supply from the subeuphotic zone, thereby increasing the iron-to-nutrient ratio and therefore the nitrate utilization in the mixed surface layer. Large variations in d15Nbulk were also recorded from 180 to 130 ka BP (MIS 6), indicating a potential link to insolation and sea-level forcing and its related feedbacks. Millennial-scale oscillations were observed in d15Nbulk and d13Cbulk that might be related to Greenland interstadials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reliable dating of glaciomarine sediments deposited on the Antarctic shelf since the Last Glacial Maximum (LGM) is very challenging because of the general absence of calcareous (micro-) fossils and the recycling of fossil organic matter. As a consequence, radiocarbon (14C) ages of the acid-insoluble organic fraction (AIO) of the sediments bear uncertainties that are very difficult to quantify. In this paper we present the results of three different chronostratigraphic methods to date a sedimentary unit consisting of diatomaceous ooze and diatomaceous mud that was deposited following the last deglaciation at five core sites on the inner shelf in the western Amundsen Sea (West Antarctica). In three cores conventional 14C dating of the AIO in bulk sediment samples yielded age reversals down-core, but at all sites the AIO 14C ages obtained from diatomaceous ooze within the diatom-rich unit yielded similar uncorrected 14C ages ranging from 13,517±56 to 11,543±47 years before present (yr BP). Correction of these ages by subtracting the core-top ages, which are assumed to reflect present-day deposition (as indicated by 21044 Pb dating of the sediment surface at one core site), yielded ages between ca. 10,500 and 8,400 calibrated years before present (cal yr BP). Correction of the AIO ages of the diatomaceous ooze by only subtracting the marine reservoir effect (MRE) of 1,300 years indicated deposition of the diatom-rich sediments between 14,100 and 11,900 cal yr BP. Most of these ages are consistent with age constraints between 13.0 and 8.0 ka BP for the diatom-rich unit, which we obtained by correlating the relative palaeomagnetic intensity (RPI) records of three of the sediment cores with global and regional reference curves for palaeomagnetic intensity. As a third dating technique we applied conventional 53 radiocarbon dating of the AIO included in acid-cleaned diatom hard parts that were extracted from the diatomaceous ooze. This method yielded uncorrected 14C ages of only 5,111±38 and 5,106±38 yr BP, respectively. We reject these young ages, because they are likely to be overprinted by the adsorption of modern atmospheric carbon dioxide onto the surfaces of the extracted diatom hard parts prior to sample graphitisation and combustion for 14C dating. The deposition of the diatom-rich unit in the western Amundsen Sea suggests deglaciation of the inner shelf before ca. 13 ka BP. The deposition of diatomaceous oozes on other parts of the Antarctic shelf around the same time, however, seems to be coincidental rather than directly related.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Matuyama Diatom Maximum (MDM) is a time of peak opal accumulation from 2.6 to ~2.0 Ma within the Benguela Current upwelling system that was initiated by increased influence of Southern Ocean water on the eastern South Atlantic. We measured opal, total organic carbon (TOC), and CaCO3 fluxes and C and N stable isotopes in sediments deposited from 2.4 to 1.95 Ma at Sites 1082 and 1084 to explore the biogeochemical dynamics within the Benguela region. The infusion of Southern Ocean water delivered dissolved nutrients and Southern Ocean flora and fauna, resulting in local opal accumulation increasing up to 8 g/cm**2/ky and the production of diatom mats. Some d15N measurements of diatom-bound organic matter indicate that the mats grew within the Benguela region. The bulk sediment d15N records are taken to reflect changes in the d15N of nitrate in the incoming water, where lower values at 2.4 Ma reflect less nitrate utilization in the Antarctic. A long-term increase in relative nitrate uptake in the Southern Ocean is evidenced by the gradual increase in d15N toward 1.9 Ma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we demonstrate the relevance of lateral particle transport in nepheloid layers for organic carbon (OC) accumulation and burial across high-productive continental margins. We present geochemical data from surface sediments and suspended particles in the bottom nepheloid layer (BNL) from the most productive coastal upwelling area of the modern ocean, the Benguela upwelling system offshore southwest Africa. Interpretation of depositional patterns and comparison of downslope trends in OC content, organic matter composition, and 14C age between suspended particles and surface sediments indicate that lateral particle transport is the primary mechanism controlling supply and burial of OC. We propose that effective seaward particle transport primarily along the BNL is a key process that promotes and maintains local high sedimentation rates, ultimately causing high preservation of OC in a depocenter on the upper slope offshore Namibia. As lateral transport efficiently displaces areas of enhanced OC burial from maximum production at highly productive continental margins, vertical particle flux models do not sufficiently explain the relationship between primary production and shallow-marine OC burial. On geologic time scales, the widest distribution and strongest intensity of lateral particle transport is expected during periods of rapid sea-level change. At times in the geologic past, widespread downslope lateral transport of OC thus may have been a primary driver of enhanced OC burial at deeper continental slopes and abyssal basins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphorus is an essential nutrient for life. In the ocean, phosphorus burial regulates marine primary production**1, 2. Phosphorus is removed from the ocean by sedimentation of organic matter, and the subsequent conversion of organic phosphorus to phosphate minerals such as apatite, and ultimately phosphorite deposits**3, 4. Bacteria are thought to mediate these processes**5, but the mechanism of sequestration has remained unclear. Here, we present results from laboratory incubations in which we labelled organic-rich sediments from the Benguela upwelling system, Namibia, with a 33P-radiotracer, and tracked the fate of the phosphorus. We show that under both anoxic and oxic conditions, large sulphide-oxidizing bacteria accumulate 33P in their cells, and catalyse the nearly instantaneous conversion of phosphate to apatite. Apatite formation was greatest under anoxic conditions. Nutrient analyses of Namibian upwelling waters and sediments suggest that the rate of phosphate-to-apatite conversion beneath anoxic bottom waters exceeds the rate of phosphorus release during organic matter mineralization in the upper sediment layers. We suggest that bacterial apatite formation is a significant phosphorus sink under anoxic bottom-water conditions. Expanding oxygen minimum zones are projected in simulations of future climate change**6, potentially increasing sequestration of marine phosphate, and restricting marine productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment and interstitial water samples recovered during DSDP Leg 93 at Site 603 (lower continental rise off Cape Hatteras) were analyzed for a series of geochemical facies indicators to elucidate the nature and origin of the sedimentary material. Special emphasis was given to middle Cretaceous organic-matter-rich turbidite sequences of Aptian to Turanian age. Organic carbon content ranges from nil in pelagic claystone samples to 4.2% (total rock) in middle Cretaceous carbonaceous mudstones of turbiditic origin. The organic matter is of marine algal origin with significant contributions of terrigenous matter via turbidites. Maturation indices (vitrinite reflectance) reveal that the terrestrial humic material is reworked. Maturity of autochthonous material (i.e., primary vitrinite) falls in the range of 0.3 to 0.6% Carbohydrate, hydrocarbon, and microscopic investigations reveal moderate to high microbial degradation. Unlike deep-basin black shales of the South and North Atlantic, organic-carbon-rich members of the Hatteras Formation lack trace metal enrichment. Dissolved organic carbon (DOC) in interstitial water samples ranges from 34.4 ppm in a sandstone sample to 126.2 ppm in an organic-matter-rich carbonaceous claystone sample. One to two percent of DOC is carbohydratecarbon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The source, concentration, and potential impact of sewage discharge and incomplete organic matter (OM) combustion on sedimentary microbial populations were assessed in Dublin Bay, Ireland. Polycyclic aromatic hydrocarbons (PAHs) and faecal steroids were investigated in 30 surface sediment stations in the bay. Phospholipid fatty acid (PLFA) content at each station was used to identify and quantify the broad microbial groups present and the impact of particle size, total organic carbon (%TOC), total hydrogen (%H) and total nitrogen (%N) was also considered. Faecal sterols were found to be highest in areas with historical point sources of sewage discharge. PAH distribution was more strongly associated with areas of deposition containing high %silt and %clay content, suggesting that PAHs are from diffuse sources such as rainwater run-off and atmospheric deposition. The PAHs ranged from 12 to 3072 ng/g, with 10 stations exceeding the suggested effect range low (ERL) for PAHs in marine sediments. PAH isomer pair ratios and sterol ratios were used to determine the source and extent of pollution. PLFAs were not impacted by sediment type or water depth but were strongly correlated to, and influenced by PAH and sewage levels. Certain biomarkers such as 10Me16:0, i17:0 and a17:0 were closely associated with PAH polluted sediments, while 16:1ω9, 16:1ω7c, Cy17:0, 18:1ω6, i16:0 and 15:0 all have strong positive correlations with faecal sterols. Overall, the results show that sedimentary microbial communities are impacted by anthropogenic pollution.