968 resultados para Ryan


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) are techniques that combine the effects of visible light irradiation with subsequent biochemical events that arise from the presence of a photosensitizing drug (possessing no dark toxicity) to cause destruction of selected cells. Despite its still widespread clinical use, Photofrin (R) has several drawbacks that limit its general clinical use. Consequently, there has been extensive research into the design of improved alternative photosensitizers aimed at overcoming these drawbacks. While there are many review articles on the subject of PDT and PACT, these have focused on the photosensitizers that have been used clinically, with little emphasis placed on how the chemical aspects of the molecule can affect their efficacy as PDT agents. Indeed, many of the PDT/PACT agents used clinically may not even be the most appropriate within a given class. As such, this review aims to provide a better understanding of the factors that have been investigated, while aiming at improving the efficacy of a molecule intended to be used as a photosensitizer. Recent publications, spanning the last 5 years, concerning the design, synthesis and clinical usage of photosensitizers for application in PDT and PACT are reviewed, including 5-aminolevulinic acid, porphyrins, chlorins, bacteriochlorins, texaphyrins, phthalocyanines and porphycenes. It has been shown that there are many important considerations when designing a potential PDT/PACT agent, including the influence of added groups on the lipophilicity of the molecule, the positioning and nature of these added groups within the molecule, the presence of a central metal ion and the number of charges that the molecule possesses. The extensive ongoing research within the field has led to the identification of a number of potential lead molecules for application in PDT/PACT. The development of the second-generation photosensitizers, possessing shorter periods of photosensitization, longer activation wavelengths and greater selectivity for diseased tissue provides hope for attaining the ideal photosensitizer that may help PDT and PACT move from laboratory investigation to clinical practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we used optical coherence tomography (OCT) to extensively investigate, for the first time, the effect that microneedle (MN) geometry (MN height, and MN interspacing) and force of application have upon penetration characteristics of soluble poly(methylvinylether-co-maleic anhydride, PMVE/MA) MN arrays into neonatal porcine skin in vitro. The results from OCT investigations were then used to design optimal and suboptimal MN-based drug delivery systems and evaluate their drug delivery profiles cross full thickness and dermatomed neonatal porcine skin in vitro. It was found that increasing the force used for MN application resulted in a significant increase in the depth of penetration achieved within neonatal porcine skin. For example, MN of 600 µm height penetrated to a depth of 330 µm when inserted at a force of 4.4 N/array, while the penetration increased significantly to a depth of 520 µm, when the force of application was increased to 16.4 N/array. At an application force of 11.0 N/array it was found that, in each case, increasing MN height from 350 to 600 µm to 900 µm led to a significant increase in the depth of MN penetration achieved. Moreover, alteration of MN interspacing had no effect upon depth of penetration achieved, at a constant MN height and force of application. With respect to MN dissolution, an approximate 34% reduction in MN height occurred in the first 15 min, with only 17% of the MN height remaining after a 3-hour period. Across both skin models, there was a significantly greater cumulative amount of theophylline delivered after 24 h from an MN array of 900 µm height (292.23 ± 16.77 µg), in comparison to an MN array of 350 µm height (242.62 ± 14.81 µg) (p < 0.001). Employing full thickness skin significantly reduced drug permeation in both cases. Importantly, this study has highlighted the effect that MN geometry and application force have upon the depth of penetration into skin. While it has been shown that MN height has an important role in the extent of drug delivered across neonatal porcine skin from a soluble MN array, further studies to evaluate the full significance of MN geometry on MN mediated drug delivery are now underway. The successful use of OCT in this study could prove to be a key development for polymeric MN research, accelerating their commercial exploitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE:
Design and evaluation of a novel laser-based method for micromoulding of microneedle arrays from polymeric materials under ambient conditions. The aim of this study was to optimise polymeric composition and assess the performance of microneedle devices that possess different geometries.
METHODS:
A range of microneedle geometries was engineered into silicone micromoulds, and their physicochemical features were subsequently characterised.
RESULTS:
Microneedles micromoulded from 20% w/w aqueous blends of the mucoadhesive copolymer Gantrez® AN-139 were surprisingly found to possess superior physical strength than those produced from commonly used pharma polymers. Gantrez® AN-139 microneedles, 600 µm and 900 µm in height, penetrated neonatal porcine skin with low application forces (>0.03 N per microneedle). When theophylline was loaded into 600 µm microneedles, 83% of the incorporated drug was delivered across neonatal porcine skin over 24 h. Optical coherence tomography (OCT) showed that drug-free 600 µm Gantrez® AN-139 microneedles punctured the stratum corneum barrier of human skin in vivo and extended approximately 460 µm into the skin. However, the entirety of the microneedle lengths was not inserted.
CONCLUSION:
In this study, we have shown that a novel laser engineering method can be used in micromoulding of polymeric microneedle arrays. We are currently carrying out an extensive OCT-informed study investigating the influence of microneedle array geometry on skin penetration depth, with a view to enhanced transdermal drug delivery from optimised laser-engineered Gantrez® AN-139 microneedles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

he influence of poly(ethylene glycol) (PEG) plasticiser content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) was investigated using thermal analysis, swelling studies, scanning electron microscopy (SEM) and attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy revealed a shift of the CO peak from 1708 to 1731 cm-1, indicating that an esterification reaction had occurred upon heating, thus producing crosslinked films. Higher molecular weight PEGs (10,000 and 1000 Da, respectively), having greater chain length, producing hydrogel networks with lower crosslink densities and higher average molecular weight between two consecutive crosslinks. Accordingly, such materials exhibited higher swelling rates. Hydrogels crosslinked with a low molecular weight PEG (PEG 200) showed rigid networks with high crosslink densities and, therefore, lower swelling rates. Polymer:plasticizer ratio alteration did not yield any discernable patterns, regardless of the method of analysis. The polymer–water interaction parameter (?) increased with increases in the crosslink density. SEM studies showed that porosity of the crosslinked films increased with increasing PEG MW, confirming what had been observed with swelling studies and thermal analysis, that the crosslink density must be decreased as the Mw of the crosslinker is increased. Hydrogels containing PMVE/MA/PEG 10,000 could be used for rapid delivery of drug, due to their low crosslink density. Moderately crosslinked PMVE/MA/PEG 1000 hydrogels or highly crosslinked PMVE/MA/PEG 200 systems could then be used in controlling the drug delivery rates. We are currently evaluating these systems, both alone and in combination, for use in sustained release drug delivery devices.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new vaginal ring technology, the insert vaginal ring (InVR), is presented. The InVR overcomes the current shortfall of conventional vaginal rings (VRs) that are generally ineffectual for the delivery of hydrophilic and/or macromolecular actives, including peptides, proteins and antibodies, due to their poor permeation characteristics in the hydrophobic polymeric elastomers from which VRs are usually fabricated. Release of the model protein BSA from a variety of insert matrices for the InVR is demonstrated, including modified silicone rods, directly compressed tablets and lyophilised gels, which collectively provided controlled release profiles from several hours to beyond 4 weeks. Furthermore, the InVR was shown to deliver over 1 mg of the monoclonal antibody 2F5 from a single device, offering a potential means of protecting women against the transmission of HIV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of substrate-based a-keto-ß-aldehyde (glyoxal) sequences have been synthesised and evaluated as inhibitors of the caspase family of cysteine proteases. A number of potent inhibitor sequences have been identified. For example, a palmitic acid containing sequence pal-Tyr-Val-Ala-Asp-glyoxal was demonstrated to be an extremely effective inhibitor of caspase-1, inhibiting not only the action of the protease against synthetic fluorogenic substrates (Ki = 0.3 nM) but also blocking its processing of pro-interleukin-1beta (pro-IL-1ß). In addition, the peptide Ac-Asp-Glu-Val-Asp-glyoxal, which is based on the consensus cleavage sequence for caspase-3, is a potent inhibitor of this protease (Ki = 0.26 nM) yet only functions as a comparatively modest inhibitor of caspase-1 (Ki = 451 nM). Potent inhibitor sequences were also identified for caspases-6 and -8. However, the degree of discrimination between the family members is limited. The ability of Ac-Asp-Glu-Val-Asp-glyoxal to block caspase-3 like activity in whole cells and to delay the development of apoptosis was assessed. When tested against caspase-3 like activity in cell lysates, Ac-Asp-Glu-Val-Asp-glyoxal displayed effective inhibition similar to that observed against recombinant caspase-3. Treatment of whole cells with this potent caspase-3 inhibitor was however, not sufficient to significantly stall the development of apoptosis in-vitro.