948 resultados para Retina.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytomegalovirus (CMV) reactivation in the retina of immunocompromized patients is a cause of significant morbidity as it can lead to blindness. The adaptive immune response is critical in controlling murine CMV (MCMV) infection in MCMV-susceptible mouse strains. CD8(+) T cells limit systemic viral replication in the acute phase of infection and are essential to contain latent virus. In this study, we provide the first evaluation of the kinetics of anti-viral T-cell responses after subretinal infection with MCMV. The acute response was characterized by a rapid expansion phase, with infiltration of CD8(+) T cells into the infected retina, followed by a contraction phase. MCMV-specific T cells displayed biphasic kinetics with a first peak at day 12 and contraction by day 18 followed by sustained recruitment of these cells into the retina at later time points post-infection. MCMV-specific CD8(+) T cells were also observed in the draining cervical lymph nodes and the spleen. Presentation of viral epitopes and activation of CD8(+) T cells was widespread and could be detected in the spleen and the draining lymph nodes, but not in the retina or iris. Moreover, after intraocular infection, antigen-specific cytotoxic activity was detectable and exhibited kinetics equivalent to those observed after intraperitoneal infection with the same viral dose. These data provide novel insights of how and where immune responses are initiated when viral antigen is present in the subretinal space.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central nervous system (CNS) comprises the brain, spinal cord, optic nerves and retina, and contains post-mitotic, delicate cells. As the rigid coverings of the CNS render swelling dangerous and destructive, inflammatory reactions must be carefully controlled in CNS tissues. Nevertheless, effector immune responses that protect the host during CNS infection still occur in the CNS. Here, we describe the anatomical and cellular basis of immune surveillance in the CNS, and explain how this shapes the unique immunology of these tissues. The Review focuses principally on insights gained from the study of autoimmune responses in the CNS and to a lesser extent on models of infectious disease. Furthermore, we propose a new model to explain how antigen-specific T cell responses occur in the CNS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Claudins are major components of tight junctions and contribute to the epithelial-barrier function by restricting free diffusion of solutes through the paracellular pathway. We have mapped a new locus for recessive renal magnesium loss on chromosome 1p34.2 and have identified mutations in CLDN19, a member of the claudin multigene family, in patients affected by hypomagnesemia, renal failure, and severe ocular abnormalities. CLDN19 encodes the tight-junction protein claudin-19, and we demonstrate high expression of CLDN19 in renal tubules and the retina. The identified mutations interfere severely with either cell-membrane trafficking or the assembly of the claudin-19 protein. The identification of CLDN19 mutations in patients with chronic renal failure and severe visual impairment supports the fundamental role of claudin-19 for normal renal tubular function and undisturbed organization and development of the retina.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Following vitrectomy for PVR-associated retinal detachment, placement of an encircling band, filling with silicone oil (SO) and successful retinal reattachment, a recurrence of PVR can develop. Retinal redetachment after SO removal is usually due to secondary or residual PVR. We wanted to ascertain whether the anatomical and functional outcomes of surgery in patients with a reattached retina and recurrent PVR can be improved by delaying the removal of SO. PATIENTS AND METHODS: 112 consecutive patients with PVR-associated retinal detachment who had undergone vitrectomy with SO filling, were monitored for at least 6 months after SO removal. Prior to SO removal, the retina posterior to the encircling band had to be completely reattached. Patients who developed PVR after SO filling were divided into two groups according to the duration of SO retention: 12 - 18 months (group 2: n = 48); > 18 months (group 3: n = 21). Individuals without PVR recurrence after SO filling and in whom the SO was consequently removed within 4 - 12 months served as control (group 1: n = 43). Anatomical success, intraocular pressure (IOP) and best-corrected visual acuity (BCVA) served as the primary clinical outcome parameters. RESULTS: Six months after SO removal, the anatomical success rates (86.3 %, 88.8 % and 84.6 %, in groups 1, 2 and 3, respectively; log rank = 0.794) and the BCVAs (p = 0.861) were comparable in the three groups. Mean IOP (p = 0.766), and the frequency of complications such as PVR recurrence (p = 0.936), bullous keratopathy (p = 0.981) and macular pucker (p = 0.943) were likewise similar. Patients in whom SO was retained for more than 18 months had the highest IOPs and required the heaviest dosage with anti-glaucoma drugs. CONCLUSIONS: In patients who develop a recurrence of PVR after vitrectomy and SO filling the surgeon can observe and treat retinal changes for up to 18 months without impairing the anatomical and functional outcomes. The retention of SO for more than 18 months does not improve the anatomical outcome. However, it can impair the functional outcome by precipitating the development of a persisting secondary glaucoma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To report on the outcome of combined pars plana phacofragmentation, vitrectomy, and Artisan lens implantation in the management of subluxated cataracts. METHODS: This prospective, interventional, nonrandomized case series included nine eyes of seven consecutive adult patients with traumatic lens subluxation. Pre- and postoperative data (complete manifest refraction, best spectacle-corrected visual acuity, slit-lamp examination findings, intraocular pressure, fundus status, numerical density of endothelial cells, corneal thickness, and complications) were collected prospectively for all patients. RESULTS: After a median postoperative follow-up of 12 months (range, 8-18 months), a mean spherical equivalent of -0.50 +/- 0.87 diopter (range, +1 to -1.50 diopter) was achieved. The mean logarithm of the minimum angle of resolution visual acuity improved from 1 (preoperatively) to 0.1 (postoperatively) (P = 0.007, Wilcoxon test). Median endothelial cell losses of 15 +/- 8% (P = 0.008) and 14 +/- 16% (P = 0.011) were registered at follow-ups of 1 month and 12 months, respectively. Postoperative complications included chronic intraocular inflammation and superior corectopia. CONCLUSIONS: Our procedure appears to be a safe, accurate, stable, and efficacious option for the management of traumatic subluxated cataracts in adults. However, longer-term data are needed to evaluate the corneal endothelium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS: To compare morphometric parameters and diagnostic performance of the new Stratus Optical Coherence Tomograph (OCT) Disc mode and the Heidelberg Retina Tomograph (HRT); to evaluate OCT's accuracy in determining optic nerve head (ONH) borders. METHODS: Controls and patients with ocular hypertension, glaucoma-like discs, and glaucoma were imaged with OCT Disc mode, HRT II, and colour disc photography (DISC-PHOT). In a separate session, automatically depicted ONH shape and size in OCT were compared with DISC-PHOT, and disc borders adjusted manually where required. In a masked fashion, all print-outs and photographs were studied and discs classified as normal, borderline, and abnormal. The Cohen kappa method was then applied to test for agreement of classification. Bland-Altman analysis was used for comparison of disc measures. RESULTS: In all, 49 eyes were evaluated. Automated disc margin recognition failed in 53%. Misplaced margin points were more frequently found in myopic eyes, but only 31/187 were located in an area of peripapillary atrophy. Agreement of OCT with photography-based diagnosis was excellent in normally looking ONHs, but moderate in discs with large cups, where HRT performed better. OCT values were consistently larger than HRT values for disc and cup area. Compared with HRT, small rim areas and volumes tended to be minimized by OCT, and larger ones to be magnified. CONCLUSIONS: Stratus OCT Disc protocol performed overall well in differentiating between normal and glaucomatous ONHs. However, failure of disc border recognition was frequently observed, making manual correction necessary. ONH measures cannot be directly compared between HRT and OCT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To characterize chemoattractants expressed by the retinal pigment epithelium (RPE) after sodium iodate (NaIO3)-induced damage and to investigate whether ocular-committed stem cells preexist in the bone marrow (BM) and migrate in response to the chemoattractive signals expressed by the damaged RPE. METHODS: C57/BL6 mice were treated with a single intravenous injection of NaIO3 (50 mg/kg) to create RPE damage. At different time points real-time RT-PCR, ELISA, and immunohistochemistry were used to identify chemoattractants secreted in the subretinal space. Conditioned medium from NaIO3-treated mouse RPE was used in an in vitro assay to assess chemotaxis of stem cell antigen-1 positive (Sca-1+) BM mononuclear cells (MNCs). The expression of early ocular markers (MITF, Pax-6, Six-3, Otx) in migrated cells and in MNCs isolated from granulocyte colony-stimulating factor (G-CSF) and Flt3 ligand (FL)-mobilized and nonmobilized peripheral blood (PB) was analyzed by real-time RT-PCR. RESULTS: mRNA for stromal cell-derived factor-1 (SDF-1), C3, hepatocyte growth factor (HGF), and leukemia inhibitory factor (LIF) was significantly increased, and higher SDF-1 and C3 protein secretion from the RPE was found after NaIO3 treatment. A higher number of BMMNCs expressing early ocular markers migrated to conditioned medium from damaged retina. There was also increased expression of early ocular markers in PBMNCs after mobilization. CONCLUSIONS: Damaged RPE secretes cytokines that have been shown to serve as chemoattractants for BM-derived stem cells (BMSCs). Retina-committed stem cells appear to reside in the BM and can be mobilized into the PB by G-CSF and FL. These stem cells may have the potential to serve as an endogenous source for tissue regeneration after RPE damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We characterized changes in the visual behavior of mice in which a loss of the retinal pigment epithelium (RPE) was experimentally induced with intravenous (i.v.) administration of sodium iodate (NaIO3). We compared and correlated these changes with alterations in neural retinal structure and function. RPE loss was induced in 4-6 week old male C57BL/6 mice with an i.v. injection of 1% NaIO3 at three concentrations: 35, 50, or 70 mg/kg. At 1, 3, 7, 14, 21, and 28 days (d) as well as 6 months post injection (PI) a behavioral test was performed in previously trained mice to evaluate visual function. Eye morphology was then assessed for changes in both the RPE and neural retina. NaIO3-induced RPE degeneration was both dose and PI time dependent. Our low dose showed no effects, while our high dose caused the most damage, as did longer PI times at our intermediate dose. Using the intermediate dose, no changes were detectable in either visual behavior or retinal morphology at 1 d PI. However, at 3 d PI visual behavior became abnormal and patchy RPE cell loss was observed. From 7 d PI onward, changes in retinal morphology and visual behavior became more severe. At 6 months PI, no recovery was seen in any of these measures in mice administered the intermediate dose. These results show that NaIO3 dosage and/or time PI can be varied to produce different, yet permanent deficits in retinal morphology and visual function. Thus, this approach should provide a unique system in which the onset and severity of RPE damage, and its consequences can be manipulated. As such, it should be useful in the assessment of rescue or mitigating effects of retinal or stem cell transplantation on visual function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To quantify optical coherence tomography (OCT) images of the central retina in patients with blue-cone monochromatism (BCM) and achromatopsia (ACH) compared with healthy control individuals. METHODS: The study included 15 patients with ACH, 6 with BCM, and 20 control subjects. Diagnosis of BCM and ACH was established by visual acuity testing, morphologic examination, color vision testing, and Ganzfeld ERG recording. OCT images were acquired with the Stratus OCT 3 (Carl Zeiss Meditec AG, Oberkochen, Germany). Foveal OCT images were analyzed by calculating longitudinal reflectivity profiles (LRPs) from scan lines. Profiles were analyzed quantitatively to determine foveal thickness and distances between reflectivity layers. RESULTS: Patients with ACH and BCM had a mean visual acuity of 20/200 and 20/60, respectively. Color vision testing results were characteristic of the diseases. The LRPs of control subjects yielded four peaks (P1-P4), presumably representing the RPE (P1), the ovoid region of the photoreceptors (P2), the external limiting membrane (ELM) (P3), and the internal limiting membrane (P4). In patients with ACH, P2 was absent, but foveal thickness (P1-P4) did not differ significantly from that in the control subjects (187 +/- 20 vs. 192 +/- 14 microm, respectively). The distance from P1 to P3 did not differ significantly (78 +/- 10 vs. 82 +/- 5 microm) between ACH and controls subjects. In patients with BCM, P3 was lacking, and P2 advanced toward P1 compared with the control subjects (32 +/- 6 vs. 48 +/- 4 microm). Foveal thickness (153 +/- 16 microm) was significantly reduced compared with that in control subjects and patients with ACH. CONCLUSIONS: Quantitative OCT image analysis reveals distinct patterns for controls subjects and patients with ACH and BCM, respectively. Quantitative analysis of OCT imaging can be useful in differentiating retinal diseases affecting photoreceptors. Foveal thickness is similar in both normal subjects and patients with ACH but is decreased in patients with BCM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The heparin-binding epidermal growth factor-like growth factor (HB-EGF) has been implicated in wound-healing processes of various tissues. However, it is not known whether HB-EGF may represent a factor implicated in overstimulated wound-healing processes of the retina during proliferative retinopathies. Therefore, we investigated whether human retinal pigment epithelial (RPE) cells, which are crucially involved in proliferative retinopathies, express and respond to HB-EGF. RPE cells express mRNAs for various members of the EGF-related growth factor family, among them for HB-EGF, as well as for the EGF receptors ErbB1, -2, -3, and -4. The gene expression of HB-EGF is stimulated in the presence of transforming and basic fibroblast growth factors and by oxidative stress and is suppressed during chemical hypoxia. Exogenous HB-EGF stimulates proliferation and migration of RPE cells and the gene and protein expression of the vascular endothelial growth factor (VEGF). HB-EGF activates at least three signal transduction pathways in RPE cells including the extracellular signal-regulated kinases (involved in the proliferation-stimulating action of HB-EGF), p38 (mediates the effects on chemotaxis and secretion of VEGF), and the phosphatidylinositol-3 kinase (necessary for the stimulation of chemotaxis). In epiretinal membranes of patients with proliferative retinopathies, HB-EGF immunoreactivity was partially colocalized with the RPE cell marker, cytokeratins; this observation suggests that RPE cell-derived HB-EGF may represent one factor that drives the uncontrolled wound-healing process of the retina. The stimulating effect on the secretion of VEGF may suggest that HB-EGF is also implicated in the pathological angiogenesis of the retina.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consistent with findings of Wnt pathway members involved in vascular cells, a role for Wnt/Frizzled signaling has recently emerged in vascular cell development. Among the few Wnt family members implicated in vessel formation in adult, Wnt7b and Frizzled 4 have been shown as involved in vessel formation in the lung and in the retina, respectively. Our previous work has shown a role for secreted Frizzled-related protein-1 (sFRP-1), a proposed Wnt signaling inhibitor, in neovascularization after an ischemic event and demonstrated its role as a potent angiogenic factor. However the mechanisms involved have not been investigated. Here, we show that sFRP-1 treatment increases endothelial cell spreading on extracellular matrix as revealed by actin stress fiber reorganization in an integrin-dependent manner. We demonstrate that sFRP-1 can interact with Wnt receptors Frizzled 4 and 7 on endothelial cells to transduce downstream to cellular machineries requiring Rac-1 activity in cooperation with GSK-3beta. sFRP-1 overexpression in endothelium specifically reversed the inactivation of GSK-3 beta and increased neovascularization in ischemia-induced angiogenesis in mouse hindlimb. This study illustrates a regulated pathway by sFRP-1 involving GSK-3beta and Rac-1 in endothelial cell cytoskeletal reorganization and in neovessel formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiopoietin-2 (Ang2) is among the relevant growth factors induced by hypoxia and plays an important role in the initiation of retinal neovascularizations. Ang2 is also involved in incipient diabetic retinopathy, as it may cause pericyte loss. To investigate the impact of Ang2 on developmental and hypoxia-induced angiogenesis, we used a transgenic mouse line overexpressing human Ang2 in the mouse retina. Transgenic mice displayed a reduced coverage of capillaries with pericytes (-14%; p < 0.01) and a 46% increase of vascular density of the capillary network at postnatal day 10 compared to wild type mice. In the model of oxygen-induced retinopathy (OIR), Ang2 overexpression resulted in enhanced preretinal (+103%) and intraretinal neovascularization (+29%). Newly formed intraretinal vessels in OIR were also pericyte-deficient (-26%; p < 0.01). The total expression of Ang2 in transgenic mice was seven-fold, compared with wild type controls. Ang2 modulated expression of genes encoding VEGF (+65%) and Ang1 (+79%) in transgenic animals. These data suggest that Ang2 is involved in pericyte recruitment, and modulates intraretinal, and preretinal vessel formation in the eye under physiological and pathological conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Incipient diabetic retinopathy is characterized by increased capillary permeability and progressive capillary occlusion. The earliest structural change is the loss of pericytes (PC) from the retinal capillaries. With the availability of the XLacZ mouse, which expresses the LacZ reporter in a PC/vascular smooth muscle cell (vSMC) specific fashion, we quantitatively assessed the temporal dynamics of smooth muscle cells in arterioles under hyperglycemic conditions. We induced stable hyperglycemia in XLacZ mice. After 4, 8, and 12 weeks of diabetes retinae were isolated and beta-galactosidase/lectin stained. The numbers of smooth muscle cells were counted in retinal whole mounts, and diameters of retinal radial and branching arterioles and venules were analyzed at different distances apart from the center of the retina. After eight weeks of diabetes, the numbers of vSMCs were significantly reduced in radial arterioles 1000 microm distant from the optic disc. At proximal sites of branching arterioles (400 microm distant from the center), and at distal sites (1000 microm), vSMC were significantly reduced already after 4 weeks (to a maximum of 31 %). These changes were not associated with any measurable variation in vessel diameters. These data indicate quantitatively that hyperglycemia not only causes pericyte loss, but also loss of vSMCs in the retinal vasculature. Our data suggest that arteriolar vSMC in the eye underlie similar regulations which induce early pericyte loss in the diabetic retina.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pericytes provide vascular stability and control endothelial proliferation. Pericyte loss, microaneurysms, and acellular capillaries are characteristic for the diabetic retina. Platelet-derived growth factor (PDGF)-B is involved in pericyte recruitment, and brain capillaries of mice with a genetic ablation of PDGF-B show pericyte loss and microaneurysms. We investigated the role of capillary coverage with pericytes in early diabetic retinopathy and the contribution to proliferative retinopathy using mice with a single functional allele of PDGF-B (PDGF-B(+/-) mice). As assessed by quantitative morphometry of retinal digest preparations, pericyte numbers in nondiabetic PDGF-B(+/-) mice were reduced by 30% compared with wild-type mice, together with a small but significant increase in acellular capillaries. Pericyte numbers were reduced by 40% in diabetic wild-type mice compared with nondiabetic wild-type controls. Pericyte numbers were decreased by 50% in diabetic PDGF-B(+/-) mice compared with nondiabetic wild-type littermates, and the incidence of acellular capillaries was increased 3.5-fold when compared with nondiabetic PDGF-B(+/-) mice. To investigate the effect of pericyte loss in the context of ongoing angiogenesis, we subjected mice to hypoxia-induced proliferative retinopathy. As a result, PDGF-B(+/-) mice developed twice as many new blood vessels as their wild-type littermates. We conclude that retinal capillary coverage with pericytes is crucial for the survival of endothelial cells, particularly under stress conditions such as diabetes. At high vascular endothelial growth factor levels, such as those in the retinopathy of prematurity model, pericyte deficiency leads to reduced inhibition of endothelial proliferation in vivo.