944 resultados para Retained Trees
Resumo:
Wayside Trees is an beautifully illustrated guide to Florida trees growing south of Lake Okeechobee. It covers both native and exotic species in the areas of Miami to Palm Beach on the east coast, and Naples to Fort Meyers on the west. The introduction describes environmental, cultural and economic importance of trees, while a non-technical key provides a means for even non-specialists to identify the 167 most common species. The bulk of the book consists of illustrated descriptions of the trees, arranged by plant family, and includes ecological and cultural information on each species. Lavishly illustrated with over 1200 color photographs and diagrams, the book is designed to serve homeowners, gardeners, teachers and students, as well as environmental professionals. It is also a useful guide to urban tropical trees growing outside south Florida. The authors, a botanist and a graphic artist, have 70 collective years of experience living, working, and loving the trees of south Florida.
Resumo:
δ13C values were determined from cypresstree rings from two different study areas in SouthFlorida. One site is located in the Southeastern Everglades Marsh, where pond cypress (Taxodium ascendens) was sampled from tree islands (annual tree rings from 1970 to 2000). Bald cypress (Taxodium distichum) trees were sampled at the other site, located along the Loxahatchee River in a coastal wetland (decadal tree rings from 1830 to 1990). The isotopic time series from both sites display different, location-specific information. The pond cypressisotopic time series has a positive correlation with the total amount of annual precipitation, while the bald cypress data from the Loxahatchee River study area had two different records dependent on the level of saltwater stress. In general, for terrestrial trees growing in a temperate environment, water stress causes an increase in water-use efficiency (WUE) resulting in a relative 13C enrichment. Yet, trees growing in wetland settings in some cases do not respond in the same manner. We propose a conceptual model based on changes in carbon assimilation and isotopic fractionation as controlled by differences in stomatal resistance (water stress) and mesophyll resistance (biochemical and nutrient related) to explain the isotopic records from both sites. With further work and a longer time series, our approach may be tested, and used to reconstruct change in hydroperiods further back in time, and potentially provide a baseline for wetland restoration.
Resumo:
Effective conservation and management of top predators requires a comprehensive understanding of their distributions and of the underlying biological and physical processes that affect these distributions. The Mid-Atlantic Bight shelf break system is a dynamic and productive region where at least 32 species of cetaceans have been recorded through various systematic and opportunistic marine mammal surveys from the 1970s through 2012. My dissertation characterizes the spatial distribution and habitat of cetaceans in the Mid-Atlantic Bight shelf break system by utilizing marine mammal line-transect survey data, synoptic multi-frequency active acoustic data, and fine-scale hydrographic data collected during the 2011 summer Atlantic Marine Assessment Program for Protected Species (AMAPPS) survey. Although studies describing cetacean habitat and distributions have been previously conducted in the Mid-Atlantic Bight, my research specifically focuses on the shelf break region to elucidate both the physical and biological processes that influence cetacean distribution patterns within this cetacean hotspot.
In Chapter One I review biologically important areas for cetaceans in the Atlantic waters of the United States. I describe the study area, the shelf break region of the Mid-Atlantic Bight, in terms of the general oceanography, productivity and biodiversity. According to recent habitat-based cetacean density models, the shelf break region is an area of high cetacean abundance and density, yet little research is directed at understanding the mechanisms that establish this region as a cetacean hotspot.
In Chapter Two I present the basic physical principles of sound in water and describe the methodology used to categorize opportunistically collected multi-frequency active acoustic data using frequency responses techniques. Frequency response classification methods are usually employed in conjunction with net-tow data, but the logistics of the 2011 AMAPPS survey did not allow for appropriate net-tow data to be collected. Biologically meaningful information can be extracted from acoustic scattering regions by comparing the frequency response curves of acoustic regions to theoretical curves of known scattering models. Using the five frequencies on the EK60 system (18, 38, 70, 120, and 200 kHz), three categories of scatterers were defined: fish-like (with swim bladder), nekton-like (e.g., euphausiids), and plankton-like (e.g., copepods). I also employed a multi-frequency acoustic categorization method using three frequencies (18, 38, and 120 kHz) that has been used in the Gulf of Maine and Georges Bank which is based the presence or absence of volume backscatter above a threshold. This method is more objective than the comparison of frequency response curves because it uses an established backscatter value for the threshold. By removing all data below the threshold, only strong scattering information is retained.
In Chapter Three I analyze the distribution of the categorized acoustic regions of interest during the daytime cross shelf transects. Over all transects, plankton-like acoustic regions of interest were detected most frequently, followed by fish-like acoustic regions and then nekton-like acoustic regions. Plankton-like detections were the only significantly different acoustic detections per kilometer, although nekton-like detections were only slightly not significant. Using the threshold categorization method by Jech and Michaels (2006) provides a more conservative and discrete detection of acoustic scatterers and allows me to retrieve backscatter values along transects in areas that have been categorized. This provides continuous data values that can be integrated at discrete spatial increments for wavelet analysis. Wavelet analysis indicates significant spatial scales of interest for fish-like and nekton-like acoustic backscatter range from one to four kilometers and vary among transects.
In Chapter Four I analyze the fine scale distribution of cetaceans in the shelf break system of the Mid-Atlantic Bight using corrected sightings per trackline region, classification trees, multidimensional scaling, and random forest analysis. I describe habitat for common dolphins, Risso’s dolphins and sperm whales. From the distribution of cetacean sightings, patterns of habitat start to emerge: within the shelf break region of the Mid-Atlantic Bight, common dolphins were sighted more prevalently over the shelf while sperm whales were more frequently found in the deep waters offshore and Risso’s dolphins were most prevalent at the shelf break. Multidimensional scaling presents clear environmental separation among common dolphins and Risso’s dolphins and sperm whales. The sperm whale random forest habitat model had the lowest misclassification error (0.30) and the Risso’s dolphin random forest habitat model had the greatest misclassification error (0.37). Shallow water depth (less than 148 meters) was the primary variable selected in the classification model for common dolphin habitat. Distance to surface density fronts and surface temperature fronts were the primary variables selected in the classification models to describe Risso’s dolphin habitat and sperm whale habitat respectively. When mapped back into geographic space, these three cetacean species occupy different fine-scale habitats within the dynamic Mid-Atlantic Bight shelf break system.
In Chapter Five I present a summary of the previous chapters and present potential analytical steps to address ecological questions pertaining the dynamic shelf break region. Taken together, the results of my dissertation demonstrate the use of opportunistically collected data in ecosystem studies; emphasize the need to incorporate middle trophic level data and oceanographic features into cetacean habitat models; and emphasize the importance of developing more mechanistic understanding of dynamic ecosystems.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
Background: Conifer populations appear disproportionately threatened by global change. Most examples are, however, drawn from the northern hemisphere and long-term rates of population decline are not well documented as historical data are often lacking. We use a large and long-term (1931-2013) repeat photography dataset together with environmental data and fire records to account for the decline of the critically endangered Widdringtonia cedarbergensis. Eighty-seven historical and repeat photo-pairs were analysed to establish 20th century changes in W. cedarbergensis demography. A generalized linear mixed-effects model was fitted to determine the relative importance of environmental factors and fire-return interval on mortality for the species. Results: From an initial total of 1313 live trees in historical photographs, 74% had died and only 44 (3.4%) had recruited in the repeat photographs, leaving 387 live individuals. Juveniles (mature adults) had decreased (increased) from 27% (73%) to 8% (92%) over the intervening period. Our model demonstrates that mortality is related to greater fire frequency, higher temperatures, lower elevations, less rocky habitats and aspect (i.e. east-facing slopes had the least mortality). Conclusions: Our results show that W. cedarbergensis populations have declined significantly over the recorded period, with a pronounced decline in the last 30 years. Individuals that established in open habitats at lower, hotter elevations and experienced a greater fire frequency appear to be more vulnerable to mortality than individuals growing within protected, rocky environments at higher, cooler locations with less frequent fires. Climate models predict increasing temperatures for our study area (and likely increases in wildfires). If these predictions are realised, further declines in the species can be expected. Urgent management interventions, including seedling out-planting in fire-protected high elevation sites, reducing fire frequency in higher elevation populations, and assisted migration, should be considered.
Resumo:
Traditionally, many small-sized copepod species are considered to be widespread, bipolar or cosmopolitan. However, these large-scale distribution patterns need to be re-examined in view of increasing evidence of cryptic and pseudo-cryptic speciation in pelagic copepods. Here, we present a phylogeographic study of Oithona similis s.l. populations from the Arctic Ocean, the Southern Ocean and its northern boundaries, the North Atlantic and the Mediterrranean Sea. O. similis s.l. is considered as one of the most abundant species in temperate to polar oceans and acts as an important link in the trophic network between the microbial loop and higher trophic levels such as fish larvae. Two gene fragments were analysed: the mitochondrial cytochrome oxidase c subunit I (COI), and the nuclear ribosomal 28S genetic marker. Seven distinct, geographically delimitated, mitochondrial lineages could be identified, with divergences among the lineages ranging from 8 to 24 %, thus representing most likely cryptic or pseudocryptic species within O. similis s.l. Four lineages were identified within or close to the borders of the Southern Ocean, one lineage in the Arctic Ocean and two lineages in the temperate Northern hemisphere. Surprisingly the Arctic lineage was more closely related to lineages from the Southern hemisphere than to the other lineages from the Northern hemisphere, suggesting that geographic proximity is a rather poor predictor of how closely related the clades are on a genetic level. Molecular clock application revealed that the evolutionary history of O. similis s.l. is possibly closely associated with the reorganization of the ocean circulation in the mid Miocene and may be an example of allopatric speciation in the pelagic zone.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
Colorectal foreign bodies per anum introduced are not exceptional. They can be classified as high-lying or low-lying, depending on their location relative to the recto-sigmoid junction. High-lying rectal foreign bodies sometimes require surgery; low-lying ones are often palpable by digital examination and can removed at bedside. No reliable data exist regarding the frequency of inserted rectal foreign bodies and the literature is largely anecdotal. We review our experience on patients almost all males and heterosexual with retained colorectal foreign bodies and their outcome in Surgical Emergency Unit of a Southern Italy University hospital.
Resumo:
Background: Anthropogenic disturbance of old-growth tropical forests increases the abundance of early successional tree species at the cost of late successional ones. Quantifying differences in terms of carbon allocation and the proportion of recently fixed carbon in soil CO2 efflux is crucial for addressing the carbon footprint of creeping degradation. Methodology: We compared the carbon allocation pattern of the late successional gymnosperm Podocarpus falcatus (Thunb.) Mirb. and the early successional (gap filling) angiosperm Croton macrostachyus Hochst. es Del. in an Ethiopian Afromontane forest by whole tree (CO2)-C-13 pulse labeling. Over a one-year period we monitored the temporal resolution of the label in the foliage, the phloem sap, the arbuscular mycorrhiza, and in soil-derived CO2. Further, we quantified the overall losses of assimilated C-13 with soil CO2 efflux. Principal Findings: C-13 in leaves of C. macrostachyus declined more rapidly with a larger size of a fast pool (64% vs. 50% of the assimilated carbon), having a shorter mean residence time (14 h vs. 55 h) as in leaves of P. falcatus. Phloem sap velocity was about 4 times higher for C. macrostachyus. Likewise, the label appeared earlier in the arbuscular mycorrhiza of C. macrostachyus and in the soil CO2 efflux as in case of P. falcatus (24 h vs. 72 h). Within one year soil CO2 efflux amounted to a loss of 32% of assimilated carbon for the gap filling tree and to 15% for the late successional one. Conclusions: Our results showed clear differences in carbon allocation patterns between tree species, although we caution that this experiment was unreplicated. A shift in tree species composition of tropical montane forests (e. g., by degradation) accelerates carbon allocation belowground and increases respiratory carbon losses by the autotrophic community. If ongoing disturbance keeps early successional species in dominance, the larger allocation to fast cycling compartments may deplete soil organic carbon in the long run.
Resumo:
In this thesis, we define the spectrum problem for packings (coverings) of G to be the problem of finding all graphs H such that a maximum G-packing (minimum G- covering) of the complete graph with the leave (excess) graph H exists. The set of achievable leave (excess) graphs in G-packings (G-coverings) of the complete graph is called the spectrum of leave (excess) graphs for G. Then, we consider this problem for trees with up to five edges. We will prove that for any tree T with up to five edges, if the leave graph in a maximum T-packing of the complete graph Kn has i edges, then the spectrum of leave graphs for T is the set of all simple graphs with i edges. In fact, for these T and i and H any simple graph with i edges, we will construct a maximum T-packing of Kn with the leave graph H. We will also show that for any tree T with k ≤ 5 edges, if the excess graph in a minimum T-covering of the complete graph Kn has i edges, then the spectrum of excess graphs for T is the set of all simple graphs and multigraphs with i edges, except for the case that T is a 5-star, for which the graph formed by four multiple edges is not achievable when n = 12.
Resumo:
Agricultural land has been identified as a potential source of greenhouse gas emissions offsets through biosequestration in vegetation and soil. In the extensive grazing land of Australia, landholders may participate in the Australian Government’s Emissions Reduction Fund and create offsets by reducing woody vegetation clearing and allowing native woody plant regrowth to grow. This study used bioeconomic modelling to evaluate the trade-offs between an existing central Queensland grazing operation, which has been using repeated tree clearing to maintain pasture growth, and an alternative carbon and grazing enterprise in which tree clearing is reduced and the additional carbon sequestered in trees is sold. The results showed that ceasing clearing in favour of producing offsets produces a higher net present value over 20 years than the existing cattle enterprise at carbon prices, which are close to current (2015) market levels (~$13 t–1 CO2-e). However, by modifying key variables, relative profitability did change. Sensitivity analysis evaluated key variables, which determine the relative profitability of carbon and cattle. In order of importance these were: the carbon price, the gross margin of cattle production, the severity of the tree–grass relationship, the area of regrowth retained, the age of regrowth at the start of the project, and to a lesser extent the cost of carbon project administration, compliance and monitoring. Based on the analysis, retaining regrowth to generate carbon income may be worthwhile for cattle producers in Australia, but careful consideration needs to be given to the opportunity cost of reduced cattle income.
Resumo:
Clearing woodlands is practised world-wide to increase crop and livestock production, but can result in unintended consequences including woody regrowth and land degradation. The pasture response of 2 eucalypt woodlands in the central Queensland rangelands to killing trees with herbicides, in the presence or absence of grazing and regular spring burning, was recorded over 7 or 8 years to determine the long-term sustainability of these common practices. Herbage mass and species composition plus tree dynamics were monitored in 2 replicated experiments at each site. For 8 years following herbicide application, killing Eucalyptus populnea F. Muell. (poplar box) trees resulted in a doubling of native pasture herbage mass from that of the pre-existing woodland, with a tree basal area of 8.7 m2 ha-1. Conversely, over 7 years with a similar range of seasons, killing E. melanophloia F. Muell. (silver-leaved ironbark) trees of a similar tree basal area had little impact on herbage mass grown or on pasture composition for the first 4 years before production then increased. Few consistent changes in pasture composition were recorded after killing the trees, although there was an increase in the desirable grasses Dichanthium sericeum (R. Br.) A. Camus (Queensland bluegrass) and Themeda triandra Forssk. (kangaroo grass) when grazed conservatively. Excluding grazing allowed more palatable species of the major grasses to enhance their prominence, but seasonal conditions still had a major influence on their production in particular years. Pasture crown basal area was significantly higher where trees had been killed, especially in the poplar box woodland. Removing tree competition did not have a major effect on pasture composition that was independent of other management impositions or seasons, and it did not result in a rapid increase in herbage mass in both eucalypt communities. The slow pasture response to tree removal at one site indicates that regional models and economic projections relating to tree clearing require community-specific inputs.
Resumo:
"Second edition."