892 resultados para Resistance to the change
Resumo:
This paper presents a reading of current UK Government policy on recreational access to the countryside of England, in terms of its citizenship and rights agenda. Given the continuity of traditional forms of land tenure and occupation, it is argued that the policy is less of recognition of the changing needs of a tranisitory society than it is a revisionist menifesto for resisting external influence and change. This is particularly so in terms of recreation, where the underlying organisation of the physical environment has been appropriated to reproduce a reflection of the social order which increasingly descriminates between culturally legitimate and illegitimate uses of rural space.
Resumo:
A wild house mouse (Mus domesticus) population originally trapped near Reading, Berkshire, United Kingdom, and maintained as a colony in the laboratory, was subjected to the discriminating feeding period of the warfarin resistance test, as used by Wallace and MacSwiney (1976) and derived from the work of Rowe and Redfern (1964). Eighty percent of this heterogeneous population survived the resistance-test. A similar proportion of the population was found to survive the normally lethal dose of bromadiolone administered by oral gavage. The majority of this population of mice were classified as "warfarin-resistant" and "bromadiolone-resistant." The dose of 10mg.kg-1 of bromadiolone administered by oral gavage appeared to give good discrimination between susceptible and resistant individuals. The results of breeding tests indicate a single dominant gene that confers both "warfarin-resistance" and "bromadiolone-resistance", with complete expression of the resistance genotype in both males and females. Individual mice were classified as to genotype by back-crossing to a homozygous-susceptible strain, and resistance-testing the F1 generation. Separate strains of homozygous-resistant and homozygous-susceptible house mice are now being established.
Resumo:
The vulnerability of smallholder farmers to climate change and variability is increasingly rising. As agriculture is the only source of income for most of them, agricultural adaptation with respect to climate change is vital for their sustenance and to ensure food security. In order to develop appropriate strategies and institutional responses, it is necessary to have a clear understanding of the farmers’ perception of climate change, actual adaptations at farm-level and what factors drive and constrain their decision to adapt. Thus, this study investigates the farm-level adaptation to climate change based on the case of a farming community in Sri Lanka. The findings revealed that farmers’ perceived the ongoing climate change based on their experiences. Majority of them adopted measures to address climate change and variability. These adaptation measures can be categorised into five groups, such as crop management, land management, irrigation management, income diversification, and rituals. The results showed that management of non-climatic factors was an important strategy to enhance farmers’ adaptation, particularly in a resource-constrained smallholder farming context. The results of regression analysis indicated that human cognition was an important determinant of climate change adaptation. Social networks were also found to significantly influence adaptation. The study also revealed that social barriers, such as cognitive and normative factors, are equally important as other economic barriers to adaptation. While formulating and implementing the adaptation strategies, this study underscored the importance of understanding socio-economic, cognitive and normative aspects of the local communities.
Resumo:
BACKGROUND: Bruchid beetles, Callosobruchus species, are serious pests of economically important grain legumes; their activity in stores is often controlled by use of synthetic insecticides. Esterases are known to be involved in insecticide resistance in insects. However, there is dearth of information on esterase activity in the genus Callosobruchus. In this study we investigated the effect of species, geographical strain and food type on the variation of acetylcholinesterase (AChE) activity and its inhibition by malaoxon (malathion metabolite) using an in vitro spectrophotometric method. RESULT: AChE activity varied significantly among species and strains and also among legume type used for rearing them. Generally irrespective of species, strain or food type, the higher the AChE activity of a population, the higher its inhibition by malaoxon. C. chinensis had the highest AChE activity of the species studied and in the presence of malaoxon it had the lowest remaining AChE activity, while C. rhodesianus retained the highest activity. CONCLUSION: A firsthand knowledge of AChE activity in regional Callosobruchus in line with the prevailing food types should be of utmost importance to grain legume breeders, researchers on plant materials for bruchid control and pesticide manufacturer/applicators for a robust integrated management of these bruchids.
Resumo:
This study examines the sensitivity of the climate system to volcanic aerosol forcing in the third climate configuration of the Met Office Unified Model (HadCM3). The main test case was based on the 1880s when there were several volcanic eruptions, the well-known Krakatau being the largest. These eruptions increased atmospheric aerosol concentrations and induced a period of global cooling surface temperatures. In this study, an ensemble of HadCM3 has been integrated with the standard set of radiative forcings and aerosols from the Intergovernmental Panel on Climate Change Fourth Assessment Report simulations, from 1860 to present. A second ensemble removes the volcanic aerosols from 1880 to 1899. The all-forcings ensemble shows an attributable 1.2-Sv (1 Sv ≡ 106 m3 s−1) increase in the Atlantic meridional overturning circulation (AMOC) at 45°N—with a 0.04-PW increase in meridional heat transport at 40°N and increased northern Atlantic SSTs—starting around 1894, approximately 11 years after the first eruption, and lasting a further 10 years at least. The mechanisms responsible are traced to the Arctic, with suppression of the global water cycle (high-latitude precipitation), which leads to an increase in upper-level Arctic and Greenland Sea salinities. This then leads to increased convection in the Greenland–Iceland–Norwegian (GIN) Seas, enhanced Denmark Strait overflows, and AMOC changes with density anomalies traceable southward along the western Atlantic boundary. The authors investigate whether a similar response to the Pinatubo eruption in 1991 could still be ongoing, but do not find strong evidence.
Resumo:
The agricultural sector which contributes between 20-50% of gross domestic product in Africa and employs about 60% of the population is greatly affected by climate change impacts. Agricultural productivity and food prices are expected to rise due to this impact thereby worsening the food insecurity and poor nutritional health conditions in the continent. Incidentally, the capacity in the continent to adapt is very low. Addressing these challenges will therefore require a holistic and integrated adaptation framework hence this study. A total of 360 respondents selected through a multi-stage random sampling technique participated in the study that took place in Southern Nigeria from 2008-2011. Results showed that majority of respondents (84%) were aware that some climate change characteristics such as uncertainties at the onset of farming season, extreme weather events including flooding and droughts, pests, diseases, weed infestation, and land degradation have all been on the increase. The most significant effects of climate change that manifested in the area were declining soil fertility and weed infestation. Some of the adaptation strategies adopted by farmers include increased weeding, changing the timing of farm operations, and processing of crops to reduce post-harvest losses. Although majority of respondents were aware of government policies aimed at protecting the environment, most of them agreed that these policies were not being effectively implemented. A mutually inclusive framework comprising of both indigenous and modern techniques, processes, practices and technologies was then developed from the study in order to guide farmers in adapting to climate change effects/impacts.
Resumo:
There has been considerable interest in the climate impact of trends in stratospheric water vapor (SWV). However, the representation of the radiative properties of water vapor under stratospheric conditions remains poorly constrained across different radiation codes. This study examines the sensitivity of a detailed line-by-line (LBL) code, a Malkmus narrow-band model and two broadband GCM radiation codes to a uniform perturbation in SWV in the longwave spectral region. The choice of sampling rate in wave number space (Δν) in the LBL code is shown to be important for calculations of the instantaneous change in heating rate (ΔQ) and the instantaneous longwave radiative forcing (ΔFtrop). ΔQ varies by up to 50% for values of Δν spanning 5 orders of magnitude, and ΔFtrop varies by up to 10%. In the three less detailed codes, ΔQ differs by up to 45% at 100 hPa and 50% at 1 hPa compared to a LBL calculation. This causes differences of up to 70% in the equilibrium fixed dynamical heating temperature change due to the SWV perturbation. The stratosphere-adjusted radiative forcing differs by up to 96% across the less detailed codes. The results highlight an important source of uncertainty in quantifying and modeling the links between SWV trends and climate.
Resumo:
This paper explores the sensitivity of Atmospheric General Circulation Model (AGCM) simulations to changes in the meridional distribution of sea surface temperature (SST). The simulations are for an aqua-planet, a water covered Earth with no land, orography or sea-ice and with specified zonally symmetric SST. Simulations from 14 AGCMs developed for Numerical Weather Prediction and climate applications are compared. Four experiments are performed to study the sensitivity to the meridional SST profile. These profiles range from one in which the SST gradient continues to the equator to one which is flat approaching the equator, all with the same maximum SST at the equator. The zonal mean circulation of all models shows strong sensitivity to latitudinal distribution of SST. The Hadley circulation weakens and shifts poleward as the SST profile flattens in the tropics. One question of interest is the formation of a double versus a single ITCZ. There is a large variation between models of the strength of the ITCZ and where in the SST experiment sequence they transition from a single to double ITCZ. The SST profiles are defined such that as the equatorial SST gradient flattens, the maximum gradient increases and moves poleward. This leads to a weakening of the mid-latitude jet accompanied by a poleward shift of the jet core. Also considered are tropical wave activity and tropical precipitation frequency distributions. The details of each vary greatly between models, both with a given SST and in the response to the change in SST. One additional experiment is included to examine the sensitivity to an off-equatorial SST maximum. The upward branch of the Hadley circulation follows the SST maximum off the equator. The models that form a single precipitation maximum when the maximum SST is on the equator shift the precipitation maximum off equator and keep it centered over the SST maximum. Those that form a double with minimum on the equatorial maximum SST shift the double structure off the equator, keeping the minimum over the maximum SST. In both situations only modest changes appear in the shifted profile of zonal average precipitation. When the upward branch of the Hadley circulation moves into the hemisphere with SST maximum, the zonal average zonal, meridional and vertical winds all indicate that the Hadley cell in the other hemisphere dominates.
Resumo:
The importance of aerosol emissions for near term climate projections is investigated by analysing simulations with the HadGEM2-ES model under two different emissions scenarios: RCP2.6 and RCP4.5. It is shown that the near term warming projected under RCP2.6 is greater than under RCP4.5, even though the greenhouse gas forcing is lower. Rapid and substantial reductions in sulphate aerosol emissions due to a reduction of coal burning in RCP2.6 lead to a reduction in the negative shortwave forcing due to aerosol direct and indirect effects. Indirect effects play an important role over the northern hemisphere oceans, especially the subtropical northeastern Pacific where an anomaly of 5-10\,Wm$^{-2}$ develops. The pattern of surface temperature change is consistent with the expected response to this surface radiation anomaly, whilst also exhibiting features that reflect redistribution of energy, and feedbacks, within the climate system. These results demonstrate the importance of aerosol emissions as a key source of uncertainty in near term projections of global and regional climate.
Resumo:
Limnologists had an early preoccupation with lake classification. It gave a necessary structure to the many chemical and biological observations that were beginning to form the basis of one of the earliest truly environmental sciences. August Thienemann was the doyen of such classifiers and his concept with Einar Naumann of oligotrophic and eutrophic lakes remains central to the world-view that limnologists still have. Classification fell into disrepute, however, as it became clear that there would always be lakes that deviated from the prescriptions that the classifiers made for them. Continua became the de rigeur concept and lakes were seen as varying along many chemical, biological and geographic axes. Modern limnologists are comfortable with this concept. That all lakes are different guarantees an indefinite future for limnological research. For those who manage lakes and the landscapes in which they are set, however, it is not very useful. There may be as many as 300000 standing water bodies in England and Wales alone and maybe as many again in Scotland. More than 80 000 are sizable (> 1 ha). Some classification scheme to cope with these numbers is needed and, as human impacts on them increase, a system of assessing and monitoring change must be built into such a scheme. Although ways of classifying and monitoring running waters are well developed in the UK, the same is not true of standing waters. Sufficient understanding of what determines the nature and functioning of lakes exists to create a system which has intellectual credibility as well as practical usefulness. This paper outlines the thinking behind a system which will be workable on a north European basis and presents some early results.
Resumo:
A panel of 388 salmonellas of animal and human origin, comprising 35 serotypes, was tested for resistance to cyclohexane and to a range of antibiotics, disinfectants and dyes. Cyclohexane resistance was detected in 41 isolates (10.6%): these comprised members of the serovars Binza (1 of 15), Dublin (1 of 24), Enteritidis (1 of 61), Fischerkietz (4 of 5), Livingstone (9 of 11), Montevideo (1 of 32), Newport (4 of 23), Saint-paul (1 of 3), Senftenberg (10 of 24) and Typhimurium (9 of 93). Most (39 of 41) of the cyclohexane-resistant isolates were from poultry. Statistical analysis showed that the cyclohexane-resistant strains were significantly more resistant than the cyclohexane-susceptible strains to ampicillin, chloramphenicol, ciprofloxacin, erythromycin, nalidixic acid, tetracycline, trimethoprim, cetrimide and triclosan. The multiresistance patterns seen,were typical of those caused by efflux pumps, such as AcrAB. The emergence of such resistance may play an important role in the overall antibiotic resistance picture of Salmonella, with particular effect on ciprofloxacin.
Resumo:
Improved crop yield forecasts could enable more effective adaptation to climate variability and change. Here, we explore how to combine historical observations of crop yields and weather with climate model simulations to produce crop yield projections for decision relevant timescales. Firstly, the effects on historical crop yields of improved technology, precipitation and daily maximum temperatures are modelled empirically, accounting for a nonlinear technology trend and interactions between temperature and precipitation, and applied specifically for a case study of maize in France. The relative importance of precipitation variability for maize yields in France has decreased significantly since the 1960s, likely due to increased irrigation. In addition, heat stress is found to be as important for yield as precipitation since around 2000. A significant reduction in maize yield is found for each day with a maximum temperature above 32 °C, in broad agreement with previous estimates. The recent increase in such hot days has likely contributed to the observed yield stagnation. Furthermore, a general method for producing near-term crop yield projections, based on climate model simulations, is developed and utilized. We use projections of future daily maximum temperatures to assess the likely change in yields due to variations in climate. Importantly, we calibrate the climate model projections using observed data to ensure both reliable temperature mean and daily variability characteristics, and demonstrate that these methods work using retrospective predictions. We conclude that, to offset the projected increased daily maximum temperatures over France, improved technology will need to increase base level yields by 12% to be confident about maintaining current levels of yield for the period 2016–2035; the current rate of yield technology increase is not sufficient to meet this target.
Resumo:
Land-use changes can alter the spatial population structure of plant species, which may in turn affect the attractiveness of flower aggregations to different groups of pollinators at different spatial scales. To assess how pollinators respond to spatial heterogeneity of plant distributions and whether honeybees affect visitation by other pollinators we used an extensive data set comprising ten plant species and their flower visitors from five European countries. In particular we tested the hypothesis that the composition of the flower visitor community in terms of visitation frequencies by different pollinator groups were affected by the spatial plant population structure, viz. area and density measures, at a within-population (‘patch’) and among-population (‘population’) scale. We found that patch area and population density were the spatial variables that best explained the variation in visitation frequencies within the pollinator community. Honeybees had higher visitation frequencies in larger patches, while bumblebees and hoverflies had higher visitation frequencies in sparser populations. Solitary bees had higher visitation frequencies in sparser populations and smaller patches. We also tested the hypothesis that honeybees affect the composition of the pollinator community by altering the visitation frequencies of other groups of pollinators. There was a positive relationship between visitation frequencies of honeybees and bumblebees, while the relationship with hoverflies and solitary bees varied (positive, negative and no relationship) depending on the plant species under study. The overall conclusion is that the spatial structure of plant populations affects different groups of pollinators in contrasting ways at both the local (‘patch’) and the larger (‘population’) scales and, that honeybees affect the flower visitation by other pollinator groups in various ways, depending on the plant species under study. These contrasting responses emphasize the need to investigate the entire pollinator community when the effects of landscape change on plant–pollinator interactions are studied.
Resumo:
The paper provides a descriptive analysis of the carbon management activities of the cement industry in Europe based on a study involving the four largest producers of cement in the world. Based on this analysis, the paper explores the relationship between managerial perception and strategy with particular focus on the impact of government regulation and competitive dynamics. The research is based on extensive documentary analysis and in-depth interviews with senior managers from the four companies who have been responsible for and/or involved in the development of climate change strategies. We find that whilst the cement industry has embraced climate change and the need for action, their remains much scope for action in their carbon management activities with current effort concentration on hedging practices and win-win efficiency programs. Managers perceive that inadequate and unfavourable regulatory structure is the key barrier against more action to achieve emission reduction within the industry. EU Cement companies are also shifting their CO2 emissions to less developed countries of the South.
Resumo:
Atmospheric turbulence causes most weather-related aircraft incidents1. Commercial aircraft encounter moderate-or-greater turbulence tens of thousands of times each year worldwide, injuring probably hundreds of passengers (occasionally fatally), costing airlines tens of millions of dollars and causing structural damage to planes1, 2, 3. Clear-air turbulence is especially difficult to avoid, because it cannot be seen by pilots or detected by satellites or on-board radar4, 5. Clear-air turbulence is linked to atmospheric jet streams6, 7, which are projected to be strengthened by anthropogenic climate change8. However, the response of clear-air turbulence to projected climate change has not previously been studied. Here we show using climate model simulations that clear-air turbulence changes significantly within the transatlantic flight corridor when the concentration of carbon dioxide in the atmosphere is doubled. At cruise altitudes within 50–75° N and 10–60° W in winter, most clear-air turbulence measures show a 10–40% increase in the median strength of turbulence and a 40–170% increase in the frequency of occurrence of moderate-or-greater turbulence. Our results suggest that climate change will lead to bumpier transatlantic flights by the middle of this century. Journey times may lengthen and fuel consumption and emissions may increase. Aviation is partly responsible for changing the climate9, but our findings show for the first time how climate change could affect aviation.