988 resultados para Residual Soil Materials


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the effect of incorporation of recycled glass fibre reinforced plastics (GFRP) waste materials, obtained by means of shredding and milling processes, on mechanical behavior of polyester polymer mortar (PM) materials was assessed. For this purpose, different contents of GFRP recyclates (between 4% up to 12% in mass), were incorporated into polyester PM materials as sand aggregates and filler replacements. The effect of silane coupling agent addition to resin binder was also evaluated. Applied waste material was proceeding from the shredding of the leftovers resultant from the cutting and assembly processes of GFRP pultrusion profiles. Currently, these leftovers, jointly with unfinished products and scrap resulting from pultrusion manufacturing process, are landfilled, with supplementary added costs. Thus, besides the evident environmental benefits, a viable and feasible solution for these wastes would also conduct to significant economic advantages. Design of experiments and data treatment were accomplish by means of full factorial design approach and analysis of variance ANOVA. Experimental results were promising toward the recyclability of GFRP waste materials as aggregates and reinforcement for PM materials, with significant improvements on mechanical properties with regard to non-modified formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Portuguese northern forests are often and severely affected by wildfires during the summer season. Some preventive actions, such as prescribed (or controlled) burnings and clear-cut logging, are often used as a measure to reduce the occurrences of wildfires. In the particular case of Serra da Cabreira forest, due to extremely difficulties in operational field work, the prescribed (or controlled) burning technique is the the most common preventive action used to reduce the existing fuel load amount. This paper focuses on a Fuzzy Boolean Nets analysis of the changes in some forest soil properties, namely pH, moisture and organic matter content, after a controlled fire, and on the difficulties found during the sampling process and how they were overcome. The monitoring process was conducted during a three-month period in Anjos, Vieira do Minho, Portugal, an area located in a contact zone between a two-mica coarse-grained porphyritic granite and a biotite with plagioclase granite. The sampling sites were located in a spot dominated by quartzphyllite with quartz veins whose bedrock is partially altered and covered by slightly thick humus, which maintains low undergrowth vegetation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development and applications of thermoset polymeric composites, namely fibre reinforced plastics (FRP), have shifted in the last decades more and more into the mass market [1]. Despite of all advantages associated to FRP based products, the increasing production and consume also lead to an increasing amount of FRP wastes, either end-of-lifecycle products, or scrap and by-products generated by the manufacturing process itself. Whereas thermoplastic FRPs can be easily recycled, by remelting and remoulding, recyclability of thermosetting FRPs constitutes a more difficult task due to cross-linked nature of resin matrix. To date, most of the thermoset based FRP waste is being incinerated or landfilled, leading to negative environmental impacts and supplementary added costs to FRP producers and suppliers. This actual framework is putting increasing pressure on the industry to address the options available for FRP waste management, being an important driver for applied research undertaken cost efficient recycling methods. [1-2]. In spite of this, research on recycling solutions for thermoset composites is still at an elementary stage. Thermal and/or chemical recycling processes, with partial fibre recovering, have been investigated mostly for carbon fibre reinforced plastics (CFRP) due to inherent value of carbon fibre reinforcement; whereas for glass fibre reinforced plastics (GFRP), mechanical recycling, by means of milling and grinding processes, has been considered a more viable recycling method [1-2]. Though, at the moment, few solutions in the reuse of mechanically-recycled GFRP composites into valueadded products are being explored. Aiming filling this gap, in this study, a new waste management solution for thermoset GFRP based products was assessed. The mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the potential added value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. The use of a cementless concrete as host material for GFRP recyclates, instead of a conventional Portland cement based concrete, presents an important asset in avoiding the eventual incompatibility problems arisen from alkalis silica reaction between glass fibres and cementious binder matrix. Additionally, due to hermetic nature of resin binder, polymer based concretes present greater ability for incorporating recycled waste products [3]. Under this scope, different GFRP waste admixed polymer mortar (PM) formulations were analyzed varying the size grading and content of GFRP powder and fibre mix waste. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacities of modified mortars with regard to waste-free polymer mortars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present two Partial Least Squares Regression (PLSR) models for compressive and flexural strength responses of a concrete composite material reinforced with pultrusion wastes. The main objective is to characterize this cost-effective waste management solution for glass fiber reinforced polymer (GFRP) pultrusion wastes and end-of-life products that will lead, thereby, to a more sustainable composite materials industry. The experiments took into account formulations with the incorporation of three different weight contents of GFRP waste materials into polyester based mortars, as sand aggregate and filler replacements, two waste particle size grades and the incorporation of silane adhesion promoter into the polyester resin matrix in order to improve binder aggregates interfaces. The regression models were achieved for these data and two latent variables were identified as suitable, with a 95% confidence level. This technological option, for improving the quality of GFRP filled polymer mortars, is viable thus opening a door to selective recycling of GFRP waste and its use in the production of concrete-polymer based products. However, further and complementary studies will be necessary to confirm the technical and economic viability of the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prescribed fire is a common forest management tool used in Portugal to reduce the fuel load availability and minimize the occurrence of wildfires. In addition, the use of this technique also causes an impact to ecosystems. In this presentation we propose to illustrate some results of our project in two forest sites, both located in Northwest Portugal, where the effect of prescribed fire on soil properties were recorded during a period of 6 months. Changes in soil moisture, organic matter, soil pH and iron, were examined by Principal Component Analysis multivariate statistics technique in order to determine impact of prescribed fire on these soil properties in these two different types of soils and determine the period of time that these forest soils need to recover to their pre-fire conditions, if they can indeed recover. Although the time allocated to this study does not allow for a widespread conclusion, the data analysis clearly indicates that the pH values are positively correlated with iron values at both sites. In addition, geomorphologic differences between both sampling sites, Gramelas and Anjos, are relevant as the soils’ properties considered have shown different performances in time. The use of prescribed fire produced a lower impact in soils originated from more amended bedrock and therefore with a ticker humus covering (Gramelas) than in more rocky soils with less litter covering (Anjos) after six months after the prescribed fire occurrence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematical models and statistical analysis are key instruments in soil science scientific research as they can describe and/or predict the current state of a soil system. These tools allow us to explore the behavior of soil related processes and properties as well as to generate new hypotheses for future experimentation. A good model and analysis of soil properties variations, that permit us to extract suitable conclusions and estimating spatially correlated variables at unsampled locations, is clearly dependent on the amount and quality of data and of the robustness techniques and estimators. On the other hand, the quality of data is obviously dependent from a competent data collection procedure and from a capable laboratory analytical work. Following the standard soil sampling protocols available, soil samples should be collected according to key points such as a convenient spatial scale, landscape homogeneity (or non-homogeneity), land color, soil texture, land slope, land solar exposition. Obtaining good quality data from forest soils is predictably expensive as it is labor intensive and demands many manpower and equipment both in field work and in laboratory analysis. Also, the sampling collection scheme that should be used on a data collection procedure in forest field is not simple to design as the sampling strategies chosen are strongly dependent on soil taxonomy. In fact, a sampling grid will not be able to be followed if rocks at the predicted collecting depth are found, or no soil at all is found, or large trees bar the soil collection. Considering this, a proficient design of a soil data sampling campaign in forest field is not always a simple process and sometimes represents a truly huge challenge. In this work, we present some difficulties that have occurred during two experiments on forest soil that were conducted in order to study the spatial variation of some soil physical-chemical properties. Two different sampling protocols were considered for monitoring two types of forest soils located in NW Portugal: umbric regosol and lithosol. Two different equipments for sampling collection were also used: a manual auger and a shovel. Both scenarios were analyzed and the results achieved have allowed us to consider that monitoring forest soil in order to do some mathematical and statistical investigations needs a sampling procedure to data collection compatible to established protocols but a pre-defined grid assumption often fail when the variability of the soil property is not uniform in space. In this case, sampling grid should be conveniently adapted from one part of the landscape to another and this fact should be taken into consideration of a mathematical procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current context of serious climate changes, where the increase of the frequency of some extreme events occurrence can enhance the rate of periods prone to high intensity forest fires, the National Forest Authority often implements, in several Portuguese forest areas, a regular set of measures in order to control the amount of fuel mass availability (PNDFCI, 2008). In the present work we’ll present a preliminary analysis concerning the assessment of the consequences given by the implementation of prescribed fire measures to control the amount of fuel mass in soil recovery, in particular in terms of its water retention capacity, its organic matter content, pH and content of iron. This work is included in a larger study (Meira-Castro, 2009(a); Meira-Castro, 2009(b)). According to the established praxis on the data collection, embodied in multidimensional matrices of n columns (variables in analysis) by p lines (sampled areas at different depths), and also considering the quantitative data nature present in this study, we’ve chosen a methodological approach that considers the multivariate statistical analysis, in particular, the Principal Component Analysis (PCA ) (Góis, 2004). The experiments were carried out in a soil cover over a natural site of Andaluzitic schist, in Gramelas, Caminha, NW Portugal, who was able to maintain itself intact from prescribed burnings from four years and was submit to prescribed fire in March 2008. The soils samples were collected from five different plots at six different time periods. The methodological option that was adopted have allowed us to identify the most relevant relational structures inside the n variables, the p samples and in two sets at the same time (Garcia-Pereira, 1990). Consequently, and in addition to the traditional outputs produced from the PCA, we have analyzed the influence of both sampling depths and geomorphological environments in the behavior of all variables involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Portuguese northern forests are often and severely affected by wildfires during the summer season. These occurrences affect significant and rudely all ecosystems, namely soil, fauna and flora. Preventive actions such as prescribed burnings and clear-cut logging are frequently used and have showed a significant reduction of the natural wildfires occurrences. In Portugal, and due to some technical and operational conditions, prescribed burnings in forests are the most common preventive action used to reduce the existing fuel hazard. The overall impacts of this preventive action on Portuguese ecosystems are complex and not fully understood. This work reports to the study of a prescribed burning impact in soil chemical properties, namely pH, humidity and organic matter, by monitoring the soil self-recovery capacity. The experiments were carried out in soil cover over a natural site of Andaluzitic schist, in Gramelas, Caminha, Portugal, who was able to maintain itself intact from prescribed burnings from four years. The composed soil samples were collected from five plots at three different layers (0-3cm, 3-6cm and 6-18cm) 1 day before prescribed fire and after the prescribed fire. The results have shown that the dynamic equilibrium in soil was affected significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this contribution is to extend the models of cellular/composite material design to nonlinear material behaviour and apply them for design of materials for passive vibration control. As a first step a computational tool allowing determination of optimised one-dimensional isolator behaviour was developed. This model can serve as a representation for idealised macroscopic behaviour. Optimal isolator behaviour to a given set of loads is obtained by generic probabilistic metaalgorithm, simulated annealing. Cost functional involves minimization of maximum response amplitude in a set of predefined time intervals and maximization of total energy absorbed in the first loop. Dependence of the global optimum on several combinations of leading parameters of the simulated annealing procedure, like neighbourhood definition and annealing schedule, is also studied and analyzed. Obtained results facilitate the design of elastomeric cellular materials with improved behaviour in terms of dynamic stiffness for passive vibration control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passage of high-speed trains may induce high ground and track vibrations, which, besides increasing wheel, rail and track deterioration, may have a negative impact on the vehicle stability and on the passengers comfort. In this paper two distinct analyses are presented. The first one is dedicated to efficient decoupling of rail and soil vibrations by suggesting new interface materials in rail-sleeper fixing system, i.e. in the part where damping efficiency can be directly controlled and tested. The second analysis concerns with an adequate model of soils damping. Proper understanding and correct numerical simulation of this behaviour can help in suggesting soil improvement techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumo: Cement, as well as the remaining constituents of self-compacting mortars, must be carefully selected, in order to obtain an adequate composition with a granular mix as compact as possible and a good performance in the fresh state (self-compacting effect) and the hardened state (mechanical and durability-related behavior). Therefore in this work the possibility of incorporating nano particles in self-compacting mortars was studied. Nano materials are very reactive due mostly to their high specific surface and show a great potential to improve the properties of these mortars, both in mechanical and durability terms. In this work two nano materials were used, nano silica (nano SiO2) in colloidal state and nano titanium (nano TiO2) in amorphous state, in two types of self-compacting mortars (ratio binder:sand of 1:1 and 1:2). The self-compacting mortar mixes have the same water/cement ratio and 30% of replacement of cement with fly ashes. The influence of nano materials nano-SiO2 and nano-TiO2 on the fresh and hardened state properties of these self-compacting mortars was studied. The results show that the use of nano materials in repair and rehabilitation mortars has significant potential but still needs to be optimized. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naturally Occurring Radioactive Materials (NORM) are materials that are found naturally in the environment and contain radioactive isotopes that can cause negative effects on the health of workers who manipulate them. Present in underground work like mining and tunnel construction in granite zones, these materials are difficult to identify and characterize without appropriate equipment for risk evaluation. The assessing methods were exemplified with a case study applied to the handling and processing of phosphoric rock where one found significant amounts of radioactive isotopes and consequently elevated radon concentrations in enclosed spaces containing these materials. © 2015 Taylor & Francis Group, London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design of low-cost, conformal UHF antennas and RFID tags on two types of cork substrates: 1) natural cork and 2) agglomerate cork. Such RFID tags find an application in wine bottle and barrel identification, and in addition, they are suitable for numerous antenna-based sensing applications. This paper includes the high-frequency characterization of the selected cork substrates considering the anisotropic behavior of such materials. In addition, the variation of their permittivity values as a function of the humidity is also verified. As a proof-of-concept demonstration, three conformal RFID tags have been implemented on cork, and their performance has been evaluated using both a commercial Alien ALR8800 reader and an in-house measurement setup. The reading of all tags has been checked, and a satisfactory performance has been verified, with reading ranges spanning from 0.3 to 6 m. In addition, this paper discusses how inkjet printing can be applied to cork surfaces, and an RFID tag printed on cork is used as a humidity sensor. Its performance is tested under different humidity conditions, and a good range in excess of 3 m has been achieved, allied to a good sensitivity obtained with a shift of >5 dB in threshold power of the tag for different humid conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within a large set of renewable energies being explored to tackle energy sourcing problems, bioenergy can represent an attractive solution if effectively managed. The supply chain design supported by mathematical programming can be used as a decision support tool to the successful bioenergy production systems establishment. This strategic decision problem is addressed in this paper where we intent to study the design of the residual forestry biomass to bioelectricity production in the Portuguese context. In order to contribute to attain better solutions a mixed integer linear programming (MILP) model is developed and applied in order to optimize the design and planning of the bioenergy supply chain. While minimizing the total supply chain cost the production energy facilities capacity and location are defined. The model also includes the optimal selection of biomass amounts and sources, the transportation modes selection, and links that must be established for biomass transportation and products delivers to markets. Results illustrate the positive contribution of the mathematical programming approach to achieve viable economic solutions. Sensitivity analysis on the most uncertain parameters was performed: biomass availability, transportation costs, fixed operating costs and investment costs. (C) 2015 Elsevier Ltd. All rights reserved.