898 resultados para Remote sensing - Data acquisitions
Resumo:
This work was financially supported by the German Federal Ministry of Food and Agriculture (BMEL) through the Federal Office for Agriculture and Food (BLE), (2851ERA01J). FT and RPR were supported by FACCE MACSUR (3200009600) through the Finnish Ministry of Agriculture and Forestry (MMM). EC, HE and EL were supported by The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (220-2007-1218) and by the strategic funding ‘Soil-Water-Landscape’ from the faculty of Natural Resources and Agricultural Sciences (Swedish University of Agricultural Sciences) and thank professor P-E Jansson (Royal Institute of Technology, Stockholm) for support. JC, HR and DW thank the INRA ACCAF metaprogramm for funding and Eric Casellas from UR MIAT INRA for support. CB was funded by the Helmholtz project “REKLIM—Regional Climate Change”. CK was funded by the HGF Alliance “Remote Sensing and Earth System Dynamics” (EDA). FH was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) under the Grant FOR1695. FE and SS acknowledge support by the German Science Foundation (project EW 119/5-1). HH, GZ, SS, TG and FE thank Andreas Enders and Gunther Krauss (INRES, University of Bonn) for support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Nesting In The Clouds: Evaluating And Predicting Sea Turtle Nesting Beach Parameters From Lidar Data
Resumo:
Humans' desire for knowledge regarding animal species and their interactions with the natural world have spurred centuries of studies. The relatively new development of remote sensing systems using satellite or aircraft-borne sensors has opened up a wide field of research, which unfortunately largely remains dependent on coarse-scale image spatial resolution, particularly for habitat modeling. For habitat-specialized species, such data may not be sufficient to successfully capture the nuances of their preferred areas. Of particular concern are those species for which topographic feature attributes are a main limiting factor for habitat use. Coarse spatial resolution data can smooth over details that may be essential for habitat characterization. Three studies focusing on sea turtle nesting beaches were completed to serve as an example of how topography can be a main deciding factor for certain species. Light Detection and Ranging (LiDAR) data were used to illustrate that fine spatial scale data can provide information not readily captured by either field work or coarser spatial scale sources. The variables extracted from the LiDAR data could successfully model nesting density for loggerhead (Caretta caretta), green (Chelonia mydas), and leatherback (Dermochelys coriacea) sea turtle species using morphological beach characteristics, highlight beach changes over time and their correlations with nesting success, and provide comparisons for nesting density models across large geographic areas. Comparisons between the LiDAR dataset and other digital elevation models (DEMs) confirmed that fine spatial scale data sources provide more similar habitat information than those with coarser spatial scales. Although these studies focused solely on sea turtles, the underlying principles are applicable for many other wildlife species whose range and behavior may be influenced by topographic features.
Resumo:
The EPA promulgated the Exceptional Events Rule codifying guidance regarding exclusion of monitoring data from compliance decisions due to uncontrollable natural or exceptional events. This capstone examines documentation systems utilized by agencies requesting data be excluded from compliance decisions due to exceptional events. A screening tool is developed to determine whether an event would meet exceptional event criteria. New data sources are available to enhance analysis but evaluation shows many are unusable in their current form. The EPA and States must collaborate to develop consistent evaluation methodologies documenting exceptional events to improve the efficiency and effectiveness of the new rule. To utilize newer sophisticated data, consistent, user-friendly translation systems must be developed.
Resumo:
Time-variable gravity data from the Gravity Recovery And Climate Experiment (GRACE) mission are used to study total water content over Australia for the period 2002–2010. A time-varying annual signal explains 61% of the variance of the data, in good agreement with two independent estimates of the same quantity from hydrological models. Water mass content variations across Australia are linked to Pacific and Indian Ocean variability, associated with El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), respectively. From 1989, positive (negative) IOD phases were related to anomalously low (high) precipitation in southeastern Australia, associated with a reduced (enhanced) tropical moisture flux. In particular, the sustained water mass content reduction over central and southern regions of Australia during the period 2006–2008 is associated with three consecutive positive IOD events.
Resumo:
Subsidence is a natural hazard that affects wide areas in the world causing important economic costs annually. This phenomenon has occurred in the metropolitan area of Murcia City (SE Spain) as a result of groundwater overexploitation. In this work aquifer system subsidence is investigated using an advanced differential SAR interferometry remote sensing technique (A-DInSAR) called Stable Point Network (SPN). The SPN derived displacement results, mainly the velocity displacement maps and the time series of the displacement, reveal that in the period 2004–2008 the rate of subsidence in Murcia metropolitan area doubled with respect to the previous period from 1995 to 2005. The acceleration of the deformation phenomenon is explained by the drought period started in 2006. The comparison of the temporal evolution of the displacements measured with the extensometers and the SPN technique shows an average absolute error of 3.9±3.8 mm. Finally, results from a finite element model developed to simulate the recorded time history subsidence from known water table height changes compares well with the SPN displacement time series estimations. This result demonstrates the potential of A-DInSAR techniques to validate subsidence prediction models as an alternative to using instrumental ground based techniques for validation.
Resumo:
In this paper, we present a simple algorithm for assessing the validity of the RVoG model for PolInSAR-based inversion techniques. This approach makes use of two important features characterizing a homogeneous random volume over a ground surface, i.e., the independence on polarization states of wave propagation through the volume and the structure of the polarimetric interferometric coherency matrix. These two features have led to two different methods proposed in the literature for retrieving the topographic phase within natural covers, i.e., the well-known line fitting procedure and the observation of the (1, 2) element of the polarimetric interferometric coherency matrix. We show that differences between outputs from both approaches can be interpreted in terms of the PolInSAR modeling based on the Freeman-Durden concept, and this leads to the definition of a RVoG/non-RVoG test. The algorithm is tested with both indoor and airborne data over agricultural and tropical forest areas.
Resumo:
The Santas Justa and Rufina Gothic church (fourteenth century) has suffered several physical, mechanical, chemical, and biochemical types of pathologies along its history: rock alveolization, efflorescence, biological activity, and capillary ascent of groundwater. However, during the last two decades, a new phenomenon has seriously affected the church: ground subsidence caused by aquifer overexploitation. Subsidence is a process that affects the whole Vega Baja of the Segura River basin and consists of gradual sinking in the ground surface caused by soil consolidation due to a pore pressure decrease. This phenomenon has been studied by differential synthetic aperture radar interferometry techniques, which illustrate settlements up to 100 mm for the 1993–2009 period for the whole Orihuela city. Although no differential synthetic aperture radar interferometry information is available for the church due to the loss of interferometric coherence, the spatial analysis of nearby deformation combined with fieldwork has advanced the current understanding on the mechanisms that affect the Santas Justa and Rufina church. These results show the potential interest and the limitations of using this remote sensing technique as a complementary tool for the forensic analysis of building structures.
Resumo:
In this study, a methodology based in a dynamical framework is proposed to incorporate additional sources of information to normalized difference vegetation index (NDVI) time series of agricultural observations for a phenological state estimation application. The proposed implementation is based on the particle filter (PF) scheme that is able to integrate multiple sources of data. Moreover, the dynamics-led design is able to conduct real-time (online) estimations, i.e., without requiring to wait until the end of the campaign. The evaluation of the algorithm is performed by estimating the phenological states over a set of rice fields in Seville (SW, Spain). A Landsat-5/7 NDVI series of images is complemented with two distinct sources of information: SAR images from the TerraSAR-X satellite and air temperature information from a ground-based station. An improvement in the overall estimation accuracy is obtained, especially when the time series of NDVI data is incomplete. Evaluations on the sensitivity to different development intervals and on the mitigation of discontinuities of the time series are also addressed in this work, demonstrating the benefits of this data fusion approach based on the dynamic systems.
Resumo:
LIDAR (LIght Detection And Ranging) first return elevation data of the Boston, Massachusetts region from MassGIS at 1-meter resolution. This LIDAR data was captured in Spring 2002. LIDAR first return data (which shows the highest ground features, e.g. tree canopy, buildings etc.) can be used to produce a digital terrain model of the Earth's surface. This dataset consists of 74 First Return DEM tiles. The tiles are 4km by 4km areas corresponding with the MassGIS orthoimage index. This data set was collected using 3Di's Digital Airborne Topographic Imaging System II (DATIS II). The area of coverage corresponds to the following MassGIS orthophoto quads covering the Boston region (MassGIS orthophoto quad ID: 229890, 229894, 229898, 229902, 233886, 233890, 233894, 233898, 233902, 233906, 233910, 237890, 237894, 237898, 237902, 237906, 237910, 241890, 241894, 241898, 241902, 245898, 245902). The geographic extent of this dataset is the same as that of the MassGIS dataset: Boston, Massachusetts Region 1:5,000 Color Ortho Imagery (1/2-meter Resolution), 2001 and was used to produce the MassGIS dataset: Boston, Massachusetts, 2-Dimensional Building Footprints with Roof Height Data (from LIDAR data), 2002 [see cross references].
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present dataset contains navigation and meteorological data measured during one campaign of the Tara Oceans Expedition. Latitude and Longitude were obtained from TSG data.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present dataset contains navigation and meteorological data measured during one campaign of the Tara Oceans Expedition. Latitude and Longitude were obtained from TSG data.
Resumo:
Mode of access: Internet.
Resumo:
"Module U-3."
Resumo:
Bibliography: p. 34.