916 resultados para Remoção de urânio


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An evaluation project was conducted on the technique of treatment for effluent oil which is the deriving process to improve cashews. During the evaluation the following techniques were developed: advanced processes of humid oxidation, oxidative processes, processes of biological treatment and processes of adsorption. The assays had been carried through in kinetic models, with an evaluation of the quality of the process by means of determining the chemical demand of oxygen (defined as a technique of control by means of comparative study between the available techniques). The results demonstrated that the natural biodegradation of the effluent ones is limited, as result using the present natural flora in the effluent one revealed impracticable for an application in the industrial systems, independent of the evaluation environment (with or without the oxygen presence). The job of specific microorganisms for the oily composite degradation developed the viability technique of this route, the acceptable levels of inclusion in effluent system of treatment of the improvement of the cashew being highly good with reasonable levels of removal of CDO. However, the use combined with other techniques of daily pay-treatment for these effluent ones revealed to still be more efficient for the context of the treatment of effluent and discarding in receiving bodies in acceptable standards for resolution CONAMA 357/2005. While the significant generation of solid residues the process of adsorption with agroindustrial residues (in special the chitosan) is a technical viable alternative, however, when applied only for the treatment of the effluent ones for discarding in bodies of water, the economic viability is harmed and minimized ambient profits. Though, it was proven that if used for ends of I reuse, the viability is equalized and justifies the investments. There was a study of the photochemistry process which have are applicable to the treatment of the effluent ones, having resulted more satisfactory than those gotten for the UV-Peroxide techniques. There was different result on the one waited for the use of catalyses used in the process of Photo. The catalyses contained the mixing oxide base of Cerium and Manganese, incorporated of Potassium promoters this had presented the best results in the decomposition of the involved pollutants. Having itself an agreed form the gotten photochemistry daily paytreatment resulted, then after disinfection with chlorine the characteristics next the portability to the water were guarantee. The job of the humid oxidation presented significant results in the removal of pollutants; however, its high cost alone is made possible for job in projects of reuses, areas of low scarcity and of raised costs with the capitation/acquisition of the water, in special, for use for industrial and potable use. The route with better economic conditions and techniques for the job in the treatment of the effluent ones of the improvement of the cashew possesses the sequence to follow: conventional process of separation water-oil, photochemistry process and finally, the complementary biological treatment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discussions about pollution caused by vehicles emission are old and have been developed along the years. The search for cleaner technologies and frequent weather alterations have been inducing industries and government organizations to impose limits much more rigorous to the contaminant content in fuels, which have an direct impact in atmospheric emissions. Nowadays, the quality of fuels, in relation to the sulfur content, is carried out through the process of hydrodesulfurization. Adsorption processes also represent an interesting alternative route to the removal of sulfur content. Both processes are simpler and operate to atmospheric temperatures and pressures. This work studies the synthesis and characterization of aluminophosphate impregnate with zinc, molybdenum or both, and its application in the sulfur removal from the gasoline through the adsorption process, using a pattern gasoline containing isooctane and thiophene. The adsorbents were characterized by x-ray diffraction, differential thermal analysis (DTG), x-ray fluorescence and scanning electron microscopy (SEM). The specific area, volume and pore diameter were determined by BET (Brunauer- Emmet-Teller) and the t-plot method. The sulfur was quantified by elementary analysis using ANTEK 9000 NS. The adsorption process was evaluated as function of the temperature variation and initial sulfur content through the adsorption isotherm and its thermodynamic parameters. The parameters of entropy (ΔS), enthalpy variation (ΔH) and free Gibbs energy (ΔG) were calculated through the graph ln(Kd) versus 1/T. Langmuir, Freundlich and Langmuir-Freundlich models were adjusted to the experimental data, and the last one had presented better results. The thermodynamic tests were accomplished in different temperatures, such as 30, 40 and 50ºC, where it was concluded the adsorption process is spontaneous and exothermic. The kinetic of adsorption was studied by 24 h and it showed that the capability adsorption to the adsorbents studied respect the following order: MoZnPO > MoPO > ZnPO > AlPO. The maximum adsorption capacity was 4.91 mg/g for MoZnPO with an adsorption efficiency of 49%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing concern with the environment, in addition to strict laws, has induced the industries to find altenatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo¬Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. it's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing concern with the environment, in addition to strict laws, has induced the industries to find alternatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo- Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. It's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During production of oil and gas, there is also the production of an aqueous effluent called produced water. This byproduct has in its composition salts, organic compounds, gases and heavy metals. This research aimed to evaluate the integration of processes Induced Air Flotation (IAF) and photo-Fenton for reducing the Total Oils and Greases (TOG) present in produced water. Experiments were performed with synthetic wastewater prepared from the dispersion of crude oil in saline solution. The system was stirred for 25 min at 33,000 rpm and then allowed to stand for 50 min to allow free oil separation. The initial oil concentration in synthetic wastewater was 300 ppm and 35 ppm for the flotation and the photo-Fenton steps, respectively. These values of initial oil concentration were established based on average values of primary processing units in Potiguar Basin. The processes were studied individually and then the integration was performed considering the best experimental conditions found in each individual step. The separation by flotation showed high removal rate of oil with first-order kinetic behavior. The flotation kinetics was dependent on both the concentration and the hydrophilic-lipophilic balance (HLB) of the surfactant. The best result was obtained for the concentration of 4.06.10-3 mM (k = 0.7719 min-1) of surfactant EO 2, which represents 86% of reduction in TOG after 4 min. For series of surfactants evaluated, the separation efficiency was found to be improved by the use of surfactants with low HLB. Regarding the TOG reduction step by photo-Fenton, the largest oil removal reached was 84% after 45 min of reaction, using 0.44 mM and 10 mM of ferrous ions and hydrogen peroxide, respectively. The best experimental conditions encountered in the integrated process was 10 min of flotation followed by 45 min of photo-Fenton with overall TOG reduction of 99%, which represents 5 ppm of TOG in the treated effluent. The integration of processes flotation and photo-Fenton proved to be highly effective in reducing TOG of produced water in oilfields

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural gas, although basically composed by light hydrocarbons, also presents contaminant gases in its composition, such as CO2 (carbon dioxide) and H2S (hydrogen sulfide). The H2S, which commonly occurs in oil and gas exploration and production activities, causes damages in oil and natural gas pipelines. Consequently, the removal of hydrogen sulfide gas will result in an important reduction in operating costs. Also, it is essential to consider the better quality of the oil to be processed in the refinery, thus resulting in benefits in economic, environmental and social areas. All this facts demonstrate the need for the development and improvement in hydrogen sulfide scavengers. Currently, the oil industry uses several processes for hydrogen sulfide removal from natural gas. However, these processes produce amine derivatives which can cause damage in distillation towers, can cause clogging of pipelines by formation of insoluble precipitates, and also produce residues with great environmental impact. Therefore, it is of great importance the obtaining of a stable system, in inorganic or organic reaction media, able to remove hydrogen sulfide without formation of by-products that can affect the quality and cost of natural gas processing, transport, and distribution steps. Seeking the study, evaluation and modeling of mass transfer and kinetics of hydrogen removal, in this study it was used an absorption column packed with Raschig rings, where the natural gas, with H2S as contaminant, passed through an aqueous solution of inorganic compounds as stagnant liquid, being this contaminant gas absorbed by the liquid phase. This absorption column was coupled with a H2S detection system, with interface with a computer. The data and the model equations were solved by the least squares method, modified by Levemberg-Marquardt. In this study, in addition to the water, it were used the following solutions: sodium hydroxide, potassium permanganate, ferric chloride, copper sulfate, zinc chloride, potassium chromate, and manganese sulfate, all at low concentrations (»10 ppm). These solutions were used looking for the evaluation of the interference between absorption physical and chemical parameters, or even to get a better mass transfer coefficient, as in mixing reactors and absorption columns operating in counterflow. In this context, the evaluation of H2S removal arises as a valuable procedure for the treatment of natural gas and destination of process by-products. The study of the obtained absorption curves makes possible to determine the mass transfer predominant stage in the involved processes, the mass transfer volumetric coefficients, and the equilibrium concentrations. It was also performed a kinetic study. The obtained results showed that the H2S removal kinetics is greater for NaOH. Considering that the study was performed at low concentrations of chemical reagents, it was possible to check the effect of secondary reactions in the other chemicals, especially in the case of KMnO4, which shows that your by-product, MnO2, acts in H2S absorption process. In addition, CuSO4 and FeCl3 also demonstrated to have good efficiency in H2S removal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The petroleum production is associated to the produced water, which has dispersed and dissolved materials that damage not only the environment, but also the petroleum processing units. This study aims at the treatment of produced water focusing mainly on the removal of metals and oil and using this treated water as raw material for the production of sodium carbonate. Initially, it was addressed the removal of the following divalent metals: calcium, magnesium, barium, zinc, copper, iron, and cadmium. For this purpose, surfactants derived from vegetable oils, such as coconut oil, soybean oil, and sunflower oil, were used. The investigation showed that there is a stoichiometric relationship between the metals removed from the produced water and the surfactants used in the process of metals removal. It was also developed a model that correlates the hydrolysis constant of saponified coconut oil with the metal distribution between the resulting stages of the proposed process, flocs and aqueous phases, and relating the results with the pH of the medium. The correlation coefficient obtained was 0.963. Next, the process of producing washing soda (prefiro soda ahs ou sodium carbonate) started. The resulting water from the various treatment approaches from petroleum production water was used. During this stage of the research, it was observed that the surfactant assisted in the produced water treatment, by removing some metals and the dispersed oil entirety. The yield of sodium carbonate production was approximately 80%, and its purity was around 95%. It was also assessed, in the production of sodium carbonate, the influence of the type of reactor, using a continuous reactor and a batch reactor. These tests showed that the process with continuous reactor was not as efficient as the batch process. In general, it can be concluded that the production of sodium carbonate from water of oil production is a feasible process, rendering an effluent that causes a great environmental impact a raw material with large scale industrial use

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decade, biological purification of gaseous waste has become an important alternative to many conventional methods of exhaust air treatment. More recently, biofiltration has proved to be an effective and inexpensive method for the treatment of air contaminated with volatile organic compounds (VOCs). A biofilter consists in a reactor packed with a porous solid bed material, where the microorganisms are fixed. During the biofiltration process, polluted air is transported through the biofilter medium where the contaminant is degraded. Within the biofilm, the pollutants in the waste gases are energy and carbon sources for microbial metabolism and are transformed into CO2, water and biomass. The bed material should be characterized by satisfactory mechanical and physical properties as structure, void fraction, specific area and flow resistance. The aim of this research was the biofilter construction and study of the biological degradation of ethanol and toluene, as well as the modeling of the process. Luffa cylindrica is a brazilian fiber that was used as the filtering material of the present work. The parameters and conditions studied were: composition of nutrients solution; effect of microflorae strains, namely Pseudomanas putida and Rhodococcus rhodochrous; waste gas composition; air flow rate; and inlet load of VOCs. The biofilter operated in diffusion regime and the best results for remotion capacity were obtained when a microorganisms consortion of Pseudomanas putida and Rhodococcus rhodochrous,were used, with a gas flow rate of 1 m3.h-1 and molar ratio nitrogene/phosphore N/P=2 in the nutrients solution. The maximum remotion capacity for ethanol was around 90 g.m-3.h-1 and 50 g.m-3.h-1 to toluene. It was proved that toluene has inhibitory effect on the ethanol remotion When the two VOCs were present in the same waste gas, there was a decrease of 40% in ethanol remotion capacity. Luffa cylindrica does not present considerable pressure drop. Ottengraf and van Lith models were used to represent the results obtained for ethanol and toluene, respectively. The application of the transient model indicated a satisfactory approximation between the experimental results obtained for ethanol and toluene vapors biofiltration and the ones predicted it

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the good performance in organic matter and suspended solids removal, the anaerobic reactors are unable to remove ammonia nitrogen from sewage, which makes indispensable to include a step of post-treatment for removal of ammonia or nitrate as necessary. This paper presents the performance of a new variant technology, where the nitrification unit, preceded by anaerobic units, is a submerged aerated biological filter, without continuous sludge discharge in their daily operation. The oxygenation system is very simple and inexpensive, consisting of perforated hoses and compressors. The anaerobic reactors are a septic tank with two chambers followed (8.82 m³) and two parallel anaerobic filters (36 m³ each) filled with ceramic bricks and conics plastic parts. Both followed aerated filters were filled with cut corrugated conduit. The study evaluated the behavior of the system with constant domestic sewage flow (10 m³/d) and different aeration conditions, are these: stage 01, when applied air flow of 0.01 m³ air/min in both aerated filter; stage 02, remained in the initial air flow rate in the second aerated filter and increased at the first to 0.05 m³ air/min; at last, at last, in stage 03, the air flow rate of first aerated filter was 0.10 m³ air/min and on the second remained at 0.01 m³ air/min. The filter FA1 received load of 0.41 kg COD/m³.d, 0.37 kg COD/m³.d and 0.26 kg COD/m³.d on phases 01, 02 and 03, respectively. The FA2 received loads of 0.25 kg COD/m³.d, 0.18 kg COD/m³.d and 0.14 kg COD/m³.d on phases 01, 02 and 03, respectively. During stage 01, were found the following results: 98% removals of BODtotal and 92% of CODtotal, with effluent presenting 9 mg/L of BODtotal final average and 53 mg/L of CODtotal average; suspended solids removals of 93%, with a mean concentration of 10 mg/L in the final effluent; 47% reduction of ammonia of FA2 to FAN 's, presenting average of 28 mg NNH3/ L of ammonia in the effluent with; the dissolved oxygen levels always remained around 2.0 mg/L. During stage 02, were found removals of 97% and 95% to BODtotal and suspended solids, respectively, with average final concentrations of 8 and 7 mg/L, respectively; was removed 60% of ammonia, whose final concentration was 16.3 mg NNH3/ L, and nitrate was increased to a final average concentration of 16.55 mg N-NO3/L. Finally, the stage 03 provided 6 mg/L of DBOtotal (98% removal) and 23 mg/L of CODtotal (95% removal) of final effluent concentrations average. At this stage was identified the higher ammonia oxidation (86%), with final effluent showing average concentration of 6.1 mg N-NH3/L, reaching a minimum of 1.70 mg N-NH3/L. In some moments, during stage 03, there was a moderate denitrification process in the last aerated filter. The average turbidity in the effluent showed around 1.5 NTU, proving the good biomass physical stability. Therefore, the results demonstrate the submerged biological filters potential, filled with high void ratio material (98%), and aerated with hoses and compressor adoption, in the carbonaceous and nitrogenous matter oxidation, also generating an effluent with low concentration of solids

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eutrophication is a growing process present in the water sources located in the northeast of Brazil. Among the main consequences of these changes in trophic levels of a water source, stands out adding complexity to the treatment to achieve water standards. By these considerations, this study aimed to define, on a laboratory scale, products and operational conditions to be applied in the processing steps using raw water from Gargalheiras dam, RN, Brazil. The dam mentioned shows a high number of cyanobacteria, with a concentration of cells / ml higher than that established by Decree No. 518/04 MS. The same source was also considered by the state environmental agency in 2009 as hypereutrophic. The static tests developed in this research simulated direct filtration (laboratory filters) and pre-oxidation with chlorine and powdered activated carbon adsorption. The research included the evaluation of the coagulants aluminum hydrochloride (HCA) and alum (SA). The development of the research investigated the conditions for rapid mixing, the dosages of coagulants and pHs of coagulation by the drawing of diagrams. The interference of filtration rate and particle size of filtering means were evaluated as samples and the time of contact were tested with chlorine and activated carbon. By the results of the characterization of the raw water source it was possible to identify the presence of a high pH (7.34). The true color was significant (29 uH) in relation to the apparent color and turbidity (66 uH and 13.60 NTU), reflecting in the measurement of organic matter: MON (8.41 mg.L-1) and Abs254 (0.065 cm-1). The optimization of quick mix set time of 17", the speed gradient of 700 s-1 in the coagulation with HCA and the time of 20" with speed gradient of 800 s-1 for SA. The smaller particle sizes of sand filtering means helped the treatment and the variation in filtration rate did not affect significantly the efficiency of the process. The evaluation of the processing steps found adjustment in standard color and turbidity of the Decree nº 518/04 MS, taking in consideration the average values found in raw water. In the treatment using the HCA for direct filtration the palatable pattern based on the apparent color can be achieved with a dose of 25 mg L-1. With the addition of pre-oxidation step, the standard result was achieved with a reduced dose for 12 mgHCA.L-1. The turbidity standard for water was obtained by direct filtration when the dose exceeds 25 mg L-1 of HCA. With pre-oxidation step there is the possibility of reducing the dose to 20 mg L-1.The addition of CAP adsorption, promoted drinking water for both parameters, with even lower dosage, 13 mg L-1 of HCA. With coagulation using SA removal required for the parameter of apparent color it was achieved with pre-oxidation and 22 mgSA.L-1. Despite the satisfactory results of treatment with the alum, it was not possible to provide water with turbidity less than 1.00 NTU even with the use of all stages of treatment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stabilization pond system consisting in more sewage treatment used in Rio Grande do Norte (RN), Brazil, representing about 90% of all systems. Fecal bacteria are removed mainly facultative ponds and in maturation ponds. Many factors influence bacterial decay, such as the levels of pH and DO, temperature, light intensity, HDT and nutrient availability. The bacterial decay rate (Kb) is calculated considering many variables, but the hydraulic regime is a significant influence for microorganisms removal, and the dispersed flow which best characterizes a stabilization pond. However, some authors developed equations for the Kb accordant plug flow and complete mixing. This research study aimed to evaluate the bacterial decay of fecal coliform and Enterococcus sp. in stabilization ponds designed to treat domestic sewage, full-scale, in RN. All systems have assessed pretreatment, a facultative pond (LF) followed by two maturation (LM1 and LM2). The parameters availed were: temperature, pH, DO, BOD5, COD, fecal coliform, Enterococcus sp., Chlorophyll a, total suspended solids, fixed and volatile. In general, there were not significant differences for pH, DO and temperature in the ponds, except for the new systems, since they have low flow and hydraulic loads. The removal of organic matter in the ponds was low, about 70%, and nearly all are overloaded organic and operational problems. The bacterial removals were low, with average 96% for LF for fecal coliform, and 98% for Enterococcus sp.; LM1 were in itself a removal for fecal coliform about 71%, and 81% for Enterococcus sp.; LM2 have efficiency of 69% for fecal coliform, and 68% for Enterococcus sp. The equation proposed by Von Sperling (1999), according to the dispersed flow regime, generated empirical values of Kb more approximate to calculated values of Kb. On average, the calculated Kb to coliforms in the LF was 0.31 d-1, and for both maturation ponds were 0.35 d-1. For Enterococcus sp. the average was 0.40 d-1 for LF, 0.55 d-1 for LM1, and 0.58 d-1 for LM2. These results also showed that the Kb obtained in full-scale systems are smaller than those found in pilot-scale ponds. Moreover, one can say that the equation proposed by Marais (1974), according to the complete-mix regime, overestimates Kb. Actual results of Kb indicated that fecal coliforms are more resistant to adverse conditions present in stabilization ponds than Enterococcus sp., therefore, an indicator of microbiological safety and efficiency. The factors significant interventions in the rate of bacterial decay were concentrations of COD, the organic loading and HDT. The few Kb relationship between pH, DO and temperature were not significant. Finally, we conclude that it s essential to correct operation and maintenance, for not performing these activities is one of the main factors contributing to low rates of bacterial decay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wetlands systems are considered nowadays as a treatment method that uses simple, easy operation and low cost technology, which has been used in various parts of the world and also in Brazil. Used alone or as a complement to other types of treatment systems, once it effectively removes nutrients, pathogens and other pollutants in the water. Due to the high complexity found in wetlands, making it difficult to predict the response of the system to treat wastewater, one should consider as ideal to base the sizing of the wetland system over the necessary removal of this parameter instead of scaling it from empiricism. The study was conducted to determine the coefficient of bacterial decrease in the Wetland unit located at Ponta Negra Station Sewage Treatment, located in Natal, the coastal region of Rio Grande do Norte. The most representative model to determine the bacterial decrease in this system was the one from Chick for hydraulic piston system. Kb of 0.37 d-1 were found for the flow rate of 15m³/d, while for the system operating at maximum design flow, 30m³/d, the Kb of 0.98 d-1 was found

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The struvite precipitation in wastewater treatments plants offer advantages to obtaining a economically viable product, containing phosphorus, nitrogen and magnesium, in a bioavailable conditions to plants. The precipitation process requires ideal conditions, but all of these aspects are difficult to obtain and may result in resistance to collect crystals during the sedimentation process. Therefore, instead find the best conditions for precipitation, we propose the dissolved air flotation as another method to retrieve the crystals. The application of dissolved air flotation method to promote separation of struvite crystals from sewage supernatant, was evaluated in a precipitation-flotation reactor (flotatest) and were compared with the precipitation-sedimentation assays (jar test). Finally, were observed that the dissolved air flotation process was as feasible as sedimentation to promote struvite crystals separation, and the pH are the most influencer factor for an efficient separation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experience in the use of stabilization ponds shows that this is a system with low cost, easy operation and maintenance and suitable for tropical countries. One of its disadvantages is due to high concentrations of suspended solids, mainly due to algal biomass in the effluents. Accordingly, the dissolved air flotation has been shown to be an efficient post-treatment technology. However, the efficiency of this process is related to coagulation and flocculation steps, as well as the adjustment of the involved variables in the process. The objective of this work was to evaluate the algae removal efficiency from wastewater stabilization ponds and the influence of the factors involved in the process using dissolved air flotation. For this, we used primary facultative and maturation effluents of ETE Ponta Negra in Natal. We did tests of coagulation, flocculation and flotation with the samples, using the equipment flotatest. In this process were tested coagulants aluminum sulfate and ferric chloride, and varied the factors pH, coagulant concentration, polymer concentration and rate of recirculation. At the end of the experiments were analyzed turbidity, suspended solids, color, COD and chlorophyll "a". These results were submitted to descriptive statistics to verify the efficiency of the process in general, and regression analysis to identify models that describe the process and demonstrate the factors that have greater influence on flotation. After step methodology, high values were found removal efficiency of suspended solids, reaching values greater than 90% in the best cases. It was concluded that flotation is more efficient in the facultative pond effluent using ferric chloride, and the variability of algae may negatively influence the process. Regression analyzes showed that pH is the most influential variable in the coagulation-flocculation-flotation, and its optimal value among the tested is 5.5 for both coagulants