795 resultados para Recycled fibre
Resumo:
Experimental investigations of 10×118 Gbit/s DP-QPSK WDM transmission using three types of distributed Raman amplification techniques are presented. Novel ultra-long Raman fibre laser based amplification with second order counter-propagated pumping is compared with conventional first order and dual order counter-pumped Raman amplification. We demonstrate that URFL based amplification can extend the transmission reach up to a distance of 7520 km in comparison with 5010 km and 6180 km using first order and dual order Raman amplification respectively. © 2014 IEEE.
Resumo:
The annealing properties of Type IA Bragg gratings are investigated and compared with Type I and Type IIA Bragg gratings. The transmission properties (mean and modulated wavelength components) of gratings held at predetermined temperatures are recorded from which decay characteristics are inferred. Our data show critical results concerning the high temperature stability of Type IA gratings, as they undergo a drastic initial decay at 100°C, with a consequent mean index change that is severely reduced at this temperature However, the modulated index change of IA gratings remains stable at lower annealing temperatures of 80°C, and the mean index change decays at a comparable rate to Type I gratings at 80°C. Extending this work to include the thermal decay of Type IA gratings inscribed under strain shows that the application of strain quite dramatically transforms the temperature characteristics of the Type IA grating, modifying the temperature coefficient and annealing curves, with the grating showing a remarkable improvement in high temperature stability, leading to a robust grating that can survive temperatures exceeding 180°C. Under conditions of inscription under strain it is found that the temperature coefficient increases, but is maintained at a value considerably different to the Type I grating. Therefore, the combination of Type I and IA (strained) gratings make it possible to decouple temperature and strain over larger temperature excursions.
Resumo:
In this paper we report on investigations of some of the factors that have a bearing on the reliability and repeatability of polymer fibre Bragg gratings. The main issues discussed are the fibre preform composition, the fibre drawing conditions and the thermal history of the fibre grating.
Resumo:
We report on high power issues related to the reliability of fibre Bragg gratings inscribed with an infrared femtosecond laser using the point-by-point writing method. Conventionally, fibre Bragg gratings have usually been written in fibres using ultraviolet light, either holographically or using a phase mask. Since the coating is highly absorbing in the UV, this process normally requires that the protective polymer coating is stripped prior to inscription, with the fibre then being recoated. This results in a time consuming fabrication process that, unless great care is taken, can lead to fibre strength degradation, due to the presence of surface damage. The recent development of FBG inscription using NIR femtosecond lasers has eliminated the requirement for the stripping of the coating. At the same time the ability to write gratings point-by-point offers the potential for great flexibility in the grating design. There is, however, a requirement for reliability testing of these gratings, particularly for use in telecommunications systems where high powers are increasingly being used in long-haul transmission systems making use of Raman amplification. We report on a study of such gratings which has revealed the presence of broad spectrum power losses. When high powers are used, even at wavelengths far removed from the Bragg condition, these losses produce an increase in the fibre temperature due to absorption in the coating. We have monitored this temperature rise using the wavelength shift in the grating itself. At power levels of a few watts, various temperature increases were experienced ranging from a few degrees up to the point where the buffer completely melts off the fibre at the grating site. Further investigations are currently under way to study the optical loss mechanisms in order to optimise the inscription mechanism and minimise such losses.
Resumo:
Artificial tactile sensing systems using the distributive tactile sensing technique and fibre Bragg grating sensors are presented. A one-dimensional arrangement, with possible applications in an endoscope, is compared with a similar arrangement using conventional electronic sensors. A two-dimensional sensing surface is described, with potential applications in human balance and gait analysis, capable of detecting simultaneously the position and shape of an object placed upon it. It is believed that this work represents the first use of fibre Bragg grating sensors in a distributive sensing regime.
Resumo:
A novel all-fibre cavity ring down spectroscopy technique is demonstrated where a tilted fibre Bragg grating in the cavity provides sensitivity to surrounding refractive index. A decay time of 450ns was attained when sensing water.
Resumo:
We propose the use of ultra-long laser cavities for non-repeated fibre communication. We perform a comparison based on nonlinearity management theory between the performance of ultra-long cavities and other amplification schemes for non-repeated transmission.
Resumo:
We report an experimental comparison between broadband fibre Bragg gratings (FBGs) and conventional dispersion compensating fibre (DCF) for a 40 x 10Gb/s DWDM system over 525km. A performanceoptimised configuration using FBG compensators is presented.
Resumo:
We present femtosecond laser inscribed phase masks for the inscription of Bragg gratings in optical fibres. The principal advantage is the flexibility afforded by the femtosecond laser inscription, where sub-surface structures define the phase mask period and mask properties. The masks are used to produce fibre Bragg gratings having different orders according to the phase mask period. The work demonstrates the incredible flexibility of femtosecond lasers for the rapid prototyping of complex and reproducible mask structures. We also consider three-beam interference effects, a consequence of the zeroth-order component present in addition to higher-order diffraction components. © 2012 SPIE.
Resumo:
We present the results of femtosecond laser microstructuring of optical fibres by direct access of the fibre end face, both at the surface and several hundred microns into the fibre, to realise one-and two-dimensional grating structures and optical fibre splitters, respectively. We show the versatility of this simple but effective inscription method, where we demonstrate classic multiple slit diffraction patterns and show the potential for coarse wavelength division multiplexing for sensor signals. A key advantage for the fibre splitter is that the inscription method avoids the use of oil immersion that compensate for the fibre curvature in the standard side writing method. © 2012 SPIE.
Resumo:
A simple method of creating defined PMMA and poly (MMA-co-Cz) electrocoatings on carbon fibres is described. The electrodeposition of poly methylmethacrylate (PMMA) onto unsized, unmodified carbon fibres was performed by simple constant current electrolyses of methylmethacrylate (MMA) monomer in dimethylformamide (DMF) solutions and the 'pur' liquid monomer using sodium nitrate and lithium perchlorate as supporting electrolytes. The presence of polymeric coatings successfully attached to the carbon fibres was verified by scanning electron microscopy and photoelectron spectroscopy (XPS). Performing the electrolysis in dilute MMA in DMF solutions ([MMA]
Resumo:
In this paper, we explore theoretically a novel amplifier scheme, that combines second order bidirectional pumping and fiber Bragg grating reflectors to achieve quasi-lossless transmission over long spans. The scheme is shown to significantly reduce the signal power variation over the span as compared to commonly used schemes with the same number of pump sources. It is concluded that it can be practical to analyze a simplified system of three equations, obtained by neglecting noise terms, that would allow us to better understand the physical mechanisms and to find analytical estimates for the required pump power or the power variations along the fibre span
Resumo:
A new fibre Mach-Zehnder type based on a single LPG written in a biconical fibre taper is presented alongside a theoretical model supporting the observed effect
Resumo:
We have demonstrated the feasibility of error-free DWDM 8×40 Gb/s transmission over an 800 km SMF/DCF link with 0.8 bit/s/Hz spectral efficiency without polarization multiplexing.