967 resultados para Recombination fingerprinting
Resumo:
DNA double-strand breaks (DSBs) represent a major threat to the genomic stability of eukaryotic cells. DNA repair mechanisms such as non-homologous end joining (NHEJ) are responsible for the maintenance of eukaryotic genomes. Dysfunction of one or more of the many protein complexes that function in NHEJ can lead to sensitivity to DNA damaging agents, apoptosis, genomic instability, and severe combined immunodeficiency. One protein, Pso2p, was shown to participate in the repair of DSBs induced by DNA inter-strand cross-linking (ICL) agents such as cisplatin, nitrogen mustard or photo-activated bi-functional psoralens. The molecular function of Pso2p in DNA repair is unknown, but yeast and mammalian cell line mutants for PSO2 show the same cellular responses as strains with defects in NHEJ, e.g., sensitivity to ICLs and apoptosis. The Pso2p human homologue Artemis participates in V(D)J recombination. Mutations in Artemis induce a variety of immunological deficiencies, a predisposition to lymphomas, and an increase in chromosomal aberrations. In order to better understand the role of Pso2p in the repair of DSBs generated as repair intermediates of ICLs, an in silico approach was used to characterize the catalytic domain of Pso2p, which led to identification of novel Pso2p homologues in other organisms. Moreover, we found the catalytic core of Pso2p fused to different domains. In plants, a specific ATP-dependent DNA ligase I contains the catalytic core of Pso2p, constituting a new DNA ligase family, which was named LIG6. The possible functions of Pso2p/Artemis/Lig6p in NHEJ and V(D)J recombination and in other cellular metabolic reactions are discussed.
Resumo:
We analyzed the genetic recombination pattern of the T-cell receptor beta-chain gene (TCR-beta) in order to identify clonal expansion of T-lymphocytes in 17 human T-lymphotropic virus type I (HTLV-I)-positive healthy carriers, 7 of them with abnormal features in the peripheral blood lymphocytes. Monoclonal or oligoclonal expansion of T-cells was detected in 5 of 7 HTLV-I-positive patients with abnormal lymphocytes and unconfirmed diagnosis by using PCR amplification of segments of TCR-beta gene, in a set of reactions that target 102 different variable (V) segments, covering all members of the 24 V families available in the gene bank, including the more recently identified segments of the Vbeta-5 and Vbeta-8 family and the two diversity beta segments. Southern blots, the gold standard method to detect T-lymphocyte clonality, were negative for all of these 7 patients, what highlights the low sensitivity of this method that requires a large amount of very high quality DNA. To evaluate the performance of PCR in the detection of clonality we also analyzed 18 leukemia patients, all of whom tested positive. Clonal expansion was not detected in any of the negative controls or healthy carriers without abnormal lymphocytes. In conclusion, PCR amplification of segments of rearranged TCR-beta is reliable and highly suitable for the detection of small populations of clonal T-cells in asymptomatic HTLV-I carriers who present abnormal peripheral blood lymphocytes providing an additional instrument for following up these patients with potentially higher risk of leukemia.
Resumo:
The lipids and proteins of biomembranes exhibit highly dissimilar conformations, geometrical shapes, amphipathicity, and thermodynamic properties which constrain their two-dimensional molecular packing, electrostatics, and interaction preferences. This causes inevitable development of large local tensions that frequently relax into phase or compositional immiscibility along lateral and transverse planes of the membrane. On the other hand, these effects constitute the very codes that mediate molecular and structural changes determining and controlling the possibilities for enzymatic activity, apposition and recombination in biomembranes. The presence of proteins constitutes a major perturbing factor for the membrane sculpturing both in terms of its surface topography and dynamics. We will focus on some results from our group within this context and summarize some recent evidence for the active involvement of extrinsic (myelin basic protein), integral (Folch-Lees proteolipid protein) and amphitropic (c-Fos and c-Jun) proteins, as well as a membrane-active amphitropic phosphohydrolytic enzyme (neutral sphingomyelinase), in the process of lateral segregation and dynamics of phase domains, sculpturing of the surface topography, and the bi-directional modulation of the membrane biochemical reactivity.
Resumo:
Flavobacterium psychrophilum is the etiological agent of bacterial cold-water disease (BCWD) causing high fish mortalities and significant economic losses to the freshwater salmonid aquaculture industry around the world. Today BCWD outbreaks are mainly treated with environmentally hazardous antimicrobial agents and alternative preventative measures are urgently needed in order to ensure the well-being of animals and the sustainability of aquaculture. The diversity of pathogenic bacteria challenges the development of universal control strategies and in many cases the pathogen population structure, i.e. the total genetic diversity of the species must be taken into account. This work integrates the tools of modern molecular biology and conventional phenotypic microbiology to gain knowledge about the diversity and population structure of F. psychrophilum. The present work includes genetic characterization of a large collection of isolates collected from diverse origins and years, from aquaculture in a whole region including different countries, and provides the first international validation of a universal multilocus sequence typing (MLST) approach for unambiguous genetic typing of F. psychrophilum. Population structure analyses showed that the global F. psychrophilum population is subdivided into pathogenic species-specific clones, of which one particular genetic lineage, clonal complex CC-ST2, has been responsible for the majority of BCWD outbreaks in rainbow trout (Oncorhynchus mykiss) in European aquaculture facilities over several decades. Genotypic and phenotypic population heterogeneity affecting antimicrobial resistance in F. psychrophilum within BCWD outbreaks was discovered. Specific genotypes were associated with severe infections in farmed rainbow trout and Atlantic salmon (Salmo salar), and in addition to high adherence, antimicrobial resistance was strongly associated with outbreak strains. The study brought additional support for the hypothesis of an epidemic F. psychrophilum population structure, where recombination is an important force for the generation and maintenance of genetic diversity, and a significant contribution towards mapping the genetic diversity of this important fish pathogen. Evidence indicating dissemination of virulent strains with commercial movement of fish and fish products was strengthened.
Resumo:
Chronic Chagas' disease cardiomyopathy (CCC) is an often fatal outcome of Trypanosoma cruzi infection, with a poorer prognosis than other cardiomyopathies. CCC is refractory to heart failure treatments, and is the major indication of heart transplantation in Latin America. A diffuse myocarditis, plus intense myocardial hypertrophy, damage and fibrosis, in the presence of very few T. cruzi forms, are the histopathological hallmarks of CCC. To gain a better understanding of the pathophysiology of CCC, we analyzed the protein profile in the affected CCC myocardium. Homogenates from left ventricular myocardial samples of end-stage CCC hearts explanted during heart transplantation were subjected to two-dimensional electrophoresis with Coomassie blue staining; protein identification was performed by MALDI-ToF mass spectrometry and peptide mass fingerprinting. The identification of selected proteins was confirmed by immunoblotting. We demonstrated that 246 proteins matched in gels from two CCC patients. They corresponded to 112 distinct proteins. Along with structural/contractile and metabolism proteins, we also identified proteins involved in apoptosis (caspase 8, caspase 2), immune system (T cell receptor ß chain, granzyme A, HLA class I) and stress processes (heat shock proteins, superoxide dismutases, and other oxidative stress proteins). Proteins involved in cell signaling and transcriptional factors were also identified. The identification of caspases and oxidative stress proteins suggests the occurrence of active apoptosis and significant oxidative stress in CCC myocardium. These results generated an inventory of myocardial proteins in CCC that should contribute to the generation of hypothesis-driven experiments designed on the basis of the classes of proteins identified here.
Resumo:
Genes encoding lipoproteins LipL32, LipL41 and the outer-membrane protein OmpL1 of leptospira were recombined and cloned into a pVAX1 plasmid. BALB/c mice were immunized with LipL32 and recombined LipL32-41-OmpL1 using DNA-DNA, DNA-protein and protein-protein strategies, respectively. Prime immunization was on day 1, boost immunizations were on day 11 and day 21. Sera were collected from each mouse on day 35 for antibody, cytokine detection and microscopic agglutination test while spleen cells were collected for splenocyte proliferation assay. All experimental groups (N = 10 mice per group) showed statistically significant increases in antigen-specific antibodies, in cytokines IL-4 and IL-10, as well as in the microscopic agglutination test and splenocyte proliferation compared with the pVAX1 control group. The groups receiving the recombined LipL32-41-OmpL1 vaccine induced anti-LipL41 and anti-OmpL1 antibodies and yielded better splenocyte proliferation values than the groups receiving LipL32. DNA prime and protein boost immune strategies stimulated more antibodies than a DNA-DNA immune strategy and yielded greater cytokine and splenocyte proliferation than a protein-protein immune strategy. It is clear from these results that recombination of protective antigen genes lipL32, lipL41, and ompL1 and a DNA-protein immune strategy resulted in better immune responses against leptospira than single-component, LipL32, or single DNA or protein immunization.
Resumo:
The incidence of superficial or deep-seated infections due to Candida glabrata has increased markedly, probably because of the low intrinsic susceptibility of this microorganism to azole antifungals and its relatively high propensity to acquire azole resistance. To determine changes in the C. glabrata proteome associated with petite mutations, cytosolic extracts from an azole-resistant petite mutant of C. glabrata induced by exposure to ethidium bromide, and from its azole-susceptible parent isolate were compared by two-dimensional polyacrylamide gel electrophoresis. Proteins of interest were identified by peptide mass fingerprinting or sequence tagging using a matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometer. Tryptic peptides from a total of 160 Coomassie-positive spots were analyzed for each strain. Sixty-five different proteins were identified in the cytosolic extracts of the parent strain and 58 in the petite mutant. Among the proteins identified, 10 were higher in the mutant strain, whereas 23 were lower compared to the parent strain. The results revealed a significant decrease in the enzymes associated with the metabolic rate of mutant cells such as aconitase, transaldolase, and pyruvate kinase, and changes in the levels of specific heat shock proteins. Moreover, transketolase, aconitase and catalase activity measurements decreased significantly in the ethidium bromide-induced petite mutant. These data may be useful for designing experiments to obtain a better understanding of the nuclear response to impairment of mitochondrial function associated with this mutation in C. glabrata.
Resumo:
Wear particles are phagocytosed by macrophages and other inflammatory cells, resulting in cellular activation and release of proinflammatory factors, which cause periprosthetic osteolysis and subsequent aseptic loosening, the most common causes of total joint arthroplasty failure. During this pathological process, tumor necrosis factor-alpha (TNF-α) plays an important role in wear-particle-induced osteolysis. In this study, recombination adenovirus (Ad) vectors carrying both target genes [TNF-α small interfering RNA (TNF-α-siRNA) and bone morphogenetic protein 2 (BMP-2)] were synthesized and transfected into RAW264.7 macrophages and pro-osteoblastic MC3T3-E1 cells, respectively. The target gene BMP-2, expressed on pro-osteoblastic MC3T3-E1 cells and silenced by the TNF-α gene on cells, was treated with titanium (Ti) particles that were assessed by real-time PCR and Western blot. We showed that recombinant adenovirus (Ad-siTNFα-BMP-2) can induce osteoblast differentiation when treated with conditioned medium (CM) containing RAW264.7 macrophages challenged with a combination of Ti particles and Ad-siTNFα-BMP-2 (Ti-ad CM) assessed by alkaline phosphatase activity. The receptor activator of nuclear factor-κB ligand was downregulated in pro-osteoblastic MC3T3-E1 cells treated with Ti-ad CM in comparison with conditioned medium of RAW264.7 macrophages challenged with Ti particles (Ti CM). We suggest that Ad-siTNFα-BMP-2 induced osteoblast differentiation and inhibited osteoclastogenesis on a cell model of a Ti particle-induced inflammatory response, which may provide a novel approach for the treatment of periprosthetic osteolysis.
Resumo:
Annona crassiflora (araticum), Eugenia dysenterica (cagaita), and Caryocar brasiliense (pequi) are tropical fruits of the second biggest Brazilian biome: the cerrado. Nowadays, the cerrado faces two different realities: 1) the great possibility of food production since it is considered as the biggest storehouse of the world; and 2) the rich biodiversity that has been newly discovered and known. Previous studies showed that certain cerrado fruits demonstrate high content of total phenols and excellent antioxidant activity in in vitro models. Moreover, using fingerprinting analysis, important bioactive molecules were identified as probably responsible for their antioxidant activity. In this study, the cytotoxicity and phototocixity of ethanolic extracts from cerrado fruits were evaluated using the in vitro Neutral Red Uptake (NRU). Regarding cytotoxicity, the extracts of araticum peel and cagaita seed did not shown any cytotoxic potential up to 300 µg.mL-1. Ethanolic extracts of araticum seed and pequi peel presented low cytotoxic potential and, according to linear regressions, the estimated LD50 were de 831.6 and 2840.7 mg.kg-1, respectively. In the evaluated conditions, only the araticum peel extract presented a phototoxic potential. This is the first attempt to screen the toxicity of cerrado fruits with high antioxidant activity.
Resumo:
The characterization of wine samples by direct insertion electrospray ionization mass spectrometry (ESI-MS), without pre-treatment or chromatographic separation, in a process denominated fingerprinting, has been applied to several samples of wine produced with grapes of the Pinot noir, Merlot and Cabernet Sauvignon varieties from the state o Rio Grande do Sul, in Brazil. The ESI-MS fingerprints of the samples detected changes which occurred during the aging process in the three grape varieties. Principal Component Analysis (PCA) of the negative ion mode fingerprints was used to group the samples, pinpoint the main changes in their composition, and indicate marker ions for each group of samples.
Resumo:
The advancement of science and technology makes it clear that no single perspective is any longer sufficient to describe the true nature of any phenomenon. That is why the interdisciplinary research is gaining more attention overtime. An excellent example of this type of research is natural computing which stands on the borderline between biology and computer science. The contribution of research done in natural computing is twofold: on one hand, it sheds light into how nature works and how it processes information and, on the other hand, it provides some guidelines on how to design bio-inspired technologies. The first direction in this thesis focuses on a nature-inspired process called gene assembly in ciliates. The second one studies reaction systems, as a modeling framework with its rationale built upon the biochemical interactions happening within a cell. The process of gene assembly in ciliates has attracted a lot of attention as a research topic in the past 15 years. Two main modelling frameworks have been initially proposed in the end of 1990s to capture ciliates’ gene assembly process, namely the intermolecular model and the intramolecular model. They were followed by other model proposals such as templatebased assembly and DNA rearrangement pathways recombination models. In this thesis we are interested in a variation of the intramolecular model called simple gene assembly model, which focuses on the simplest possible folds in the assembly process. We propose a new framework called directed overlap-inclusion (DOI) graphs to overcome the limitations that previously introduced models faced in capturing all the combinatorial details of the simple gene assembly process. We investigate a number of combinatorial properties of these graphs, including a necessary property in terms of forbidden induced subgraphs. We also introduce DOI graph-based rewriting rules that capture all the operations of the simple gene assembly model and prove that they are equivalent to the string-based formalization of the model. Reaction systems (RS) is another nature-inspired modeling framework that is studied in this thesis. Reaction systems’ rationale is based upon two main regulation mechanisms, facilitation and inhibition, which control the interactions between biochemical reactions. Reaction systems is a complementary modeling framework to traditional quantitative frameworks, focusing on explicit cause-effect relationships between reactions. The explicit formulation of facilitation and inhibition mechanisms behind reactions, as well as the focus on interactions between reactions (rather than dynamics of concentrations) makes their applicability potentially wide and useful beyond biological case studies. In this thesis, we construct a reaction system model corresponding to the heat shock response mechanism based on a novel concept of dominance graph that captures the competition on resources in the ODE model. We also introduce for RS various concepts inspired by biology, e.g., mass conservation, steady state, periodicity, etc., to do model checking of the reaction systems based models. We prove that the complexity of the decision problems related to these properties varies from P to NP- and coNP-complete to PSPACE-complete. We further focus on the mass conservation relation in an RS and introduce the conservation dependency graph to capture the relation between the species and also propose an algorithm to list the conserved sets of a given reaction system.
Resumo:
The aim of this master's thesis is to develop a two-dimensional drift-di usion model, which describes charge transport in organic solar cells. The main bene t of a two-dimensional model compared to a one-dimensional one is the inclusion of the nanoscale morphology of the active layer of a bulk heterojunction solar cell. The developed model was used to study recombination dynamics at the donor-acceptor interface. In some cases, it was possible to determine e ective parameters, which reproduce the results of the two-dimensional model in the one-dimensional case. A summary of the theory of charge transport in semiconductors was presented and discussed in the context of organic materials. Additionally, the normalization and discretization procedures required to nd a numerical solution to the charge transport problem were outlined. The charge transport problem was solved by implementing an iterative scheme called successive over-relaxation. The obtained solution is given as position-dependent electric potential, free charge carrier concentrations and current densities in the active layer. An interfacial layer, separating the pure phases, was introduced in order to describe charge dynamics occurring at the interface between the donor and acceptor. For simplicity, an e ective generation of free charge carriers in the interfacial layer was implemented. The pure phases simply act as transport layers for the photogenerated charges. Langevin recombination was assumed in the two-dimensional model and an analysis of the apparent recombination rate in the one-dimensional case is presented. The recombination rate in a two-dimensional model is seen to e ectively look like reduced Langevin recombination at open circuit. Replicating the J-U curves obtained in the two-dimensional model is, however, not possible by introducing a constant reduction factor in the Langevin recombination rate. The impact of an acceptor domain in the pure donor phase was investigated. Two cases were considered, one where the acceptor domain is isolated and another where it is connected to the bulk of the acceptor. A comparison to the case where no isolated domains exist was done in order to quantify the observed reduction in the photocurrent. The results show that all charges generated at the isolated domain are lost to recombination, but the domain does not have a major impact on charge transport. Trap-assisted recombination at interfacial trap states was investigated, as well as the surface dipole caused by the trapped charges. A theoretical expression for the ideality factor n_id as a function of generation was derived and shown to agree with simulation data. When the theoretical expression was fitted to simulation data, no interface dipole was observed.
Resumo:
Adenoviral vectors are currently the most widely used gene therapeutic vectors, but their inability to integrate into host chromosomal DNA shortened their transgene expression and limited their use in clinical trials. In this project, we initially planned to develop a technique to test the effect of the early region 1 (E1) on adenovirus integration by comparing the integration efficiencies between an E1-deleted adenoviral vector (SubE1) and an Elcontaining vector (SubE3). However, we did not harvest any SubE3 virus, even if we repeated the transfection and successfully rescued the SubE1 virus (2/4 transfections generated viruses) and positive control virus (6/6). The failure of rescuing SubE3 could be caused by the instability of the genomic plasmid pFG173, as it had frequent intemal deletions when we were purifying It. Therefore, we developed techniques to test the effect of E1 on homologous recombination (HR) since literature suggested that adenovirus integration is initiated by HR. We attempted to silence the E1 in 293 cells by transfecting E1A/B-specific small interfering RNA (siRNA). However, no silenced phenotype was observed, even if we varied the concentrations of E1A/B siRNA (from 30 nM to 270 nM) and checked the silencing effects at different time points (48, 72, 96 h). One possible explanation would be that the E1A/B siRNA sequences are not potent enough to Induce the silenced phenotype. For evaluating HR efficiencies, an HR assay system based on bacterial transfonmatJon was designed. We constmcted two plasmids ( designated as pUC19-dl1 and pUC19-dl2) containing different defective lacZa cassettes (forming white colonies after transformation) that can generate a functional lacZa cassette (forming blue colonies) through HR after transfecting into 293 cells. The HR efficiencies would be expressed as the percentages of the blue colonies among all the colonies. Unfortunately, after transfonnation of plasmid isolated from 293 cells, no colony was found, even at a transformation efficiency of 1.8x10^ colonies/pg pUC19, suggesting the sensitivity of this system was low. To enhance the sensitivity, PCR was used. We designed a set of primers that can only amplify the recombinant plasmid fomied through HR. Therefore, the HR efficiencies among different treatments can be evaluated by the amplification results, and this system could be used to test the effect of E1 region on adenovirus integration. In addition, to our knowledge there was no previous studies using PCR/ Realtime PCR to evaluate HR efficiency, so this system also provides a PCR-based method to carry out the HR assays.
Resumo:
A strain of Drosophila melanogaster (mid america stock culture no. hl16) has been reported to be deficient in aldehyde oxidase activity (Hickey and Singh 1982). This strain was characterized during the course of this study and compared to other mutant strains known to be deficient in aldehyde oxidase activity. During the course of this investigation, the hl16 strain was found to be temperature sensitive in its viability. It was found that the two phenotypes, the enzyme deficiency, and the temperature sensitive lethality were the result of two different mutations, both mapping to the X-chromosome. These two mutations were found to be separable by recombination. The enzyme deficiency was found to map to the same locus as the cinnamon mutation, another mutation which affects aldehyde oxidase production. The developmental profile of aldehyde oxidase in the hl16 strain was compared to the developmental profile in the Canton S wild type strain. The aldehyde oxidase activity in adult hl16 individuals was also compared to that of various other strains. It was also found that the aldehyde oxidase activity was temperature sensitive in the adult flies. The temperature sensitive lethality mutation was mapped to position 1-0.1.
Resumo:
The construction of adenovirus vectors for cloning and foreign gene expression requires packaging cell lines that can complement missing viral functions caused by sequence deletions and/or replacement with foreign DNA sequences. In this study, packaging cell lines were designed to provide in trans the missing bovine adenovirus functions, so that recombinant viruses could be generated. Fetal bovine kidney and lUng cells, acquired at the trimester term from a pregnant cow, were tranfected with both digested wild type BAV2 genomic DNA and pCMV-EI. The plasmid pCMV-EI was specifically constructed to express El of BAV2 under the control of the cytomegalovirus enhancer/promoter (CMV). Selection for "true" transformants by continuous passaging showed no success in isolating immortalised cells, since the cells underwent crisis resulting in complete cell death. Moreover, selection for G418 resistance, using the same cells, also did not result in the isolation of an immortalised cell line and the same culture-collapse event was observed. The lack of success in establishing an immortalised cell line from fetal tissue prompted us to transfect a pre-established cell line. We began by transfecting MDBK (Mardin-Dardy bovine kidney) cells with pCMV-El-neo, which contain the bacterial selectable marker neo gene. A series of MDBK-derived cell lines, that constitutively express bovine adenoviral (BAV) early region 1 (El), were then isolated. Cells selected for resistance to the drug G418 were isolated collectively for full characterisation to assess their suitability as packaging cell lines. Individual colonies were isolated by limiting dilution and further tested for El expression and efficiency of DNA uptake. Two cell lines, L-23 and L-24, out of 48 generated foci tested positive for £1 expression using Northern Blot analysis. DNA uptake studies, using both lipofectamine and calcium phosphate methods, were performed to compare these cells, their parental MDBK cells, 8 and the unrelated human 293 cells as a benchmark. The results revealed that the new MDBKderived clones were no more efficient than MDBK cells in the transient expression of transfected DNA and that they were inferior to 293 cells, when using lacZ as the reporter gene. In view of the inherently poor transfection efficiency of MDBK cells and their derivatives, a number of other bovine cells were investigated for their potential as packaging cells. The cell line CCL40 was chosen for its high efficiency in DNA uptake and subsequently transfected with the plasmid vector pCMV El-neo. By selection with the drug G418, two cell lines were isolated, ProCell 1 and ProCell 2. These cell lines were tested for El expression, permissivity to BAV2 and DNA uptake efficiency, revealing a DNA uptake efficiency of 37 % , comparable to that of CCL40. Attempts to rescue BAV2 mutants carrying the lacZ gene in place of £1 or £3 were carried out by co-transfecting wild type viral DNA with either the plasmid pdlElE-Z (which contains BAV2 sequences from 0% to 40.4% with the lacZ gene in place of the £1 region from 1.1% to 8.25%) or with the plasmid pdlE3-5-Z (which contains BAV2 sequences from 64.8% to 100% with the lacZ gene in place of the E3 region from 75.8% to 81.4%). These cotransfections did not result in the generation of a viral mutant. The lack of mutant generation was thought to be caused by the relative inefficiency ofDNA uptake. Consequently, cosBAV2, a cosmid vector carrying the BAV2 genome, was modified to carry the neo reporter gene in place of the £3 region from 75.8% to 81.4%. The use of a single cosmid vector earring the whole genome would eliminate the need for homologous recombination in order to generate a viral vector. Unfortunately, the transfection of cosBAV2- neo also did not result in the generation of a viral mutant. This may have been caused by the size of the £3 deletion, where excess sequences that are essential to the virus' survival might have been deleted. As an extension to this study, the spontaneous E3 deletion, accidently discovered in our viral stock, could be used as site of foreign gene insertion.