991 resultados para Radical scavenging peptide
Resumo:
Em pacientes grávidas portadoras de câncer de colo de útero (CCU), as opções terapêuticas dependem da idade gestacional, do estágio clínico e do desejo da paciente. Alguns autores relataram casos de quimioterapia neoadjuvante seguidos de cirurgia radical nessas pacientes. O objetivo deste artigo foi revisitar o assunto, adicionar um novo caso e revisar a literatura. Relatamos o caso de uma mulher de 30 anos, na 24ª semana de gestação, que teve diagnóstico de câncer de colo de útero (carcinoma escamoso grau II), estágio IIB (Federação Internacional de Ginecologia e Obstetrícia - FIGO). Nulípara, a paciente recusou a interrupção da gravidez. Após meticuloso esclarecimento, a paciente aceitou tratamento com quimioterapia neoadjuvante com cisplatina 75 mg/m² e vincristina 1 mg/m², além de posterior avaliação de cirurgia radical e parto cirúrgico concomitantes. Quatros ciclos completos de quimioterapia foram administrados sem atrasos ou efeitos adversos importantes. Poucos dias antes da data programada para a cirurgia, a paciente foi admitida em trabalho de parto na 37ª semana de gestação. Devido à resposta clínica completa do tumor, a equipe obstétrica optou por monitorar o trabalho de parto, e a paciente deu à luz um recém-nascido de 2.450 g, sem intercorrências. A cirurgia radical foi realizada três dias após o parto, e a análise histopatológica revelou carcinoma confinado ao colo sem envolvimento linfonodal. Mãe e filho se encontram em bom estado geral 12 meses após o parto. Quimioterapia baseada em cisplatina durante o segundo ou terceiro trimestre da gravidez parece ser uma opção para as pacientes que não desejam a interrupção da gravidez enquanto se aguarda a maturidade fetal. Entretanto, estudos adicionais são necessários para confirmar o prognóstico e a segurança dos recém-nascidos e das pacientes.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
This review presents historical data about atrial natriuretic peptide (ANP) from its discovery as an atrial natriuretic factor (ANF) to its role as an atrial natriuretic hormone (ANH). As a hormone, ANP can interact with the hypothalamic-pituitary-adrenal axis (HPA-A) and is related to feeding activity patterns in the rat. Food restriction proved to be an interesting model to investigate this relationship. The role of ANP must be understood within a context of peripheral and central interactions involving different peptides and pathways
Resumo:
The existence of a circadian rhythm of atrial natriuretic peptide (ANP) in humans is controversial. We studied the plasma ANP response to isotonic blood volume expansion in the morning and in the afternoon and its relationship with adrenocorticotropic hormone (ACTH)-cortisol diurnal variation in seven normal subjects. Basal plasma ANP level was similar in the morning (19.6 ± 2.4 pg/ml) and in the afternoon (21.8 ± 4.8 pg/ml). The ANP peak obtained with saline infusion (0.9% NaCl, 12 ml/kg) in the morning (49.4 ± 8 pg/ml) did not differ from that obtained in the afternoon (60.3 ± 10.1 pg/ml). There was no correlation between the individual mean cortisol and ACTH levels and the ANP peak obtained with saline infusion. These data indicate no diurnal variation in plasma ANP secretion induced by blood volume expansion and no relationship between plasma ANP peak and ACTH-cortisol diurnal variation
Resumo:
A new metalloendopeptidase was purified to apparent homogeneity from a homogenate of normal human brain using successive steps of chromatography on DEAE-Trisacryl, hydroxylapatite and Sephacryl S-200. The purified enzyme cleaved the Gly33-Leu34 bond of the 25-35 neurotoxic sequence of the Alzheimer ß-amyloid 1-40 peptide producing soluble fragments without neurotoxic effects. This enzyme activity was only inhibited by divalent cation chelators such as EDTA, EGTA and o-phenanthroline (1 mM) and was insensitive to phosphoramidon and captopril (1 µM concentration), specific inhibitors of neutral endopeptidase (EC 3.4.24.11) and angiotensin-converting enzyme (EC 3.4.15.1), respectively. The high affinity of this human brain endopeptidase for ß-amyloid 1-40 peptide (Km = 5 µM) suggests that it may play a physiological role in the degradation of this substance produced by normal cellular metabolism. It may also be hypothesized that the abnormal accumulation of the amyloid ß-protein in Alzheimer's disease may be initiated by a defect or an inactivation of this enzyme.
Resumo:
In order to analyze the different parameters used in the interpretation of C-peptide response in a functional test, we compared a group of 26 type 1 diabetics aged 21.1 ± 8.2 years, with a diabetes duration of 7.9 ± 6.7 months, with a group of 24 non-diabetic subjects aged 25.0 ± 4.4 years. A standard mixed meal of 317 kcal was used as a stimulus. Blood sampling for C-peptide determinations was performed at regular intervals. Although all the studied C-peptide variables were significantly lower in the diabetic group (P<0.0001), some overlapping of parameters was observed between the two groups. The highest degree of overlapping was found for basal value (BV) (30.8%) and percent increase (42.31%), and the lowest for incremental area, absolute increase, peak value (PV) (3.8%), and total area (7.7%) (c2 = 31.6, P<0.0001). We did not observe a definite pattern in the time of maximum response among the 21 diabetics who showed an increase in C-peptide levels after the stimulus. In this group, however, there was a highly significant number of late responses (120 min) (c2 = 5.7, P<0.002). Although BV showed a significant correlation with PV (rS = 0.95, P<0.0001), the basal levels of C-peptide did not differentiate the groups with and without response to the stimulus. We conclude that the diabetic group studied showed delayed and reduced C-peptide responses, and that the functional test can be an important tool for the evaluation of residual ß cell function.
Resumo:
Methylated arginine analogues are often used as probes of the effect of nitric oxide; however, their specificity is unclear and seems to be frequently overestimated. This study analyzed the effects of NG-methyl-L-arginine (L-NMMA) on the endothelium-dependent release of vascular superoxide radicals triggered by increased flow. Plasma ascorbyl radical signals measured by direct electron paramagnetic resonance spectroscopy in 25 rabbits increased by 3.8 ± 0.7 nmol/l vs baseline (28.7 ± 1.4 nmol/l, P<0.001) in response to papaverine-induced flow increases of 121 ± 12%. In contrast, after similar papaverine-induced flow increases simultaneously with L-NMMA infusions, ascorbyl levels were not significantly changed compared to baseline. Similar results were obtained in isolated rabbit aortas perfused ex vivo with the spin trap a-phenyl-N-tert-butylnitrone (N = 22). However, in both preparations, this complete blockade was not reversed by co-infusion of excess L-arginine and was also obtained by N-methyl-D-arginine, thus indicating that it is not related to nitric oxide synthase. L-arginine alone was ineffective, as previously demonstrated for NG-methyl-L-arginine ester (L-NAME). In vitro, neither L-arginine nor its analogues scavenged superoxide radicals. This nonspecific activity of methylated arginine analogues underscores the need for careful controls in order to assess nitric oxide effects, particularly those related to interactions with active oxygen species.
Resumo:
A neurotoxic peptide, granulitoxin (GRX), was isolated from the sea anemone Bunodosoma granulifera. The N-terminal amino acid sequence of GRX is AKTGILDSDGPTVAGNSLSGT and its molecular mass is 4958 Da by electrospray mass spectrometry. This sequence presents a partial degree of homology with other toxins from sea anemones such as Bunodosoma caissarum, Anthopleura fuscoviridis and Anemonia sulcata. However, important differences were found: the first six amino acids of the sequence are different, Arg-14 was replaced by Ala and no cysteine residues were present in the partial sequence, while two cysteine residues were present in the first 21 amino acids of other toxins described above. Purified GRX injected ip (800 µg/kg) into mice produced severe neurotoxic effects such as circular movements, aggressive behavior, dyspnea, tonic-clonic convulsion and death. The 2-h LD50 of GRX was 400 ± 83 µg/kg.
Resumo:
A new metalloendopeptidase was purified to apparent homogeneity from a homogenate of normal human liver using successive steps of chromatography on DEAE-cellulose, hydroxyapatite and Sephacryl S-200. The purified enzyme hydrolyzed the Pro7-Phe8 bond of bradykinin and the Ser25-Tyr26 bond of atrial natriuretic peptide. No cleavage was produced in other peptide hormones such as vasopressin, oxytocin or Met- and Leu-enkephalin. This enzyme activity was inhibited by 1 mM divalent cation chelators such as EDTA, EGTA and o-phenanthroline and was insensitive to 1 µM phosphoramidon and captopril, specific inhibitors of neutral endopeptidase (EC 3.4.24.11) and angiotensin-converting enzyme (EC 3.4.15.1), respectively. With Mr 85 kDa, the enzyme exhibits optimal activity at pH 7.5. The high affinity of this endopeptidase for bradykinin (Km = 10 µM) and for atrial natriuretic peptide (Km = 5 µM) suggests that it may play a physiological role in the inactivation of these circulating hypotensive peptide hormones.
Resumo:
Liposomes (lipid-based vesicles) have been widely studied as drug delivery systems due to their relative safety, their structural versatility concerning size, composition and bilayer fluidity, and their ability to incorporate almost any molecule regardless of its structure. Liposomes are successful in inducing potent in vivo immunity to incorporated antigens and are now being employed in numerous immunization procedures. This is a brief overview of the structural, biophysical and pharmacological properties of liposomes and of the current strategies in the design of liposomes as vaccine delivery systems.
Resumo:
The target of any immunization is to activate and expand lymphocyte clones with the desired recognition specificity and the necessary effector functions. In gene, recombinant and peptide vaccines, the immunogen is a single protein or a small assembly of epitopes from antigenic proteins. Since most immune responses against protein and peptide antigens are T-cell dependent, the molecular target of such vaccines is to generate at least 50-100 complexes between MHC molecule and the antigenic peptide per antigen-presenting cell, sensitizing a T cell population of appropriate clonal size and effector characteristics. Thus, the immunobiology of antigen recognition by T cells must be taken into account when designing new generation peptide- or gene-based vaccines. Since T cell recognition is MHC-restricted, and given the wide polymorphism of the different MHC molecules, distinct epitopes may be recognized by different individuals in the population. Therefore, the issue of whether immunization will be effective in inducing a protective immune response, covering the entire target population, becomes an important question. Many pathogens have evolved molecular mechanisms to escape recognition by the immune system by variation of antigenic protein sequences. In this short review, we will discuss the several concepts related to selection of amino acid sequences to be included in DNA and peptide vaccines.
Resumo:
Guanylin and uroguanylin are peptides that bind to and activate guanylate cyclase C and control salt and water transport in many epithelia in vertebrates, mimicking the action of several heat-stable bacteria enterotoxins. In the kidney, both of them have well-documented natriuretic and kaliuretic effects. Since atrial natriuretic peptide (ANP) also has a natriuretic effect mediated by cGMP, experiments were designed in the isolated perfused rat kidney to identify possible synergisms between ANP, guanylin and uroguanylin. Inulin was added to the perfusate and glomerular filtration rate (GFR) was determined at 10-min intervals. Sodium was also determined. Electrolyte dynamics were measured by the clearance formula. Guanylin (0.5 µg/ml, N = 12) or uroguanylin (0.5 µg/ml, N = 9) was added to the system after 30 min of perfusion with ANP (0.1 ng/ml). The data were compared at 30-min intervals to a control (N = 12) perfused with modified Krebs-Hanseleit solution and to experiments using guanylin and uroguanylin at the same dose (0.5 µg/ml). After previous introduction of ANP in the system, guanylin promoted a reduction in fractional sodium transport (%TNa+, P<0.05) (from 78.46 ± 0.86 to 64.62 ± 1.92, 120 min). In contrast, ANP blocked uroguanylin-induced increase in urine flow (from 0.21 ± 0.01 to 0.15 ± 0.007 ml g-1 min-1, 120 min, P<0.05) and the reduction in fractional sodium transport (from 72.04 ± 0.86 to 85.19 ± 1.48, %TNa+, at 120 min of perfusion, P<0.05). Thus, the synergism between ANP + guanylin and the antagonism between ANP + uroguanylin indicate the existence of different subtypes of receptors mediating the renal actions of guanylins.
Resumo:
The effect of substance P (SP) on thyrotropin (TSH) secretion is controversial. In this study we evaluated the effect of SP on TSH secretion by hemipituitaries of 3-month-old Wistar rats in vitro and its interaction with gastrin-releasing peptide (GRP) at equimolar concentrations (1 µM and 10 µM). TSH release was measured under basal conditions and 30 min after incubation in the absence or presence of SP, GRP or both peptides. Pituitary TSH content was also measured in the pituitary homogenate after incubation. SP at both concentrations caused a significant (P<0.05) increase in TSH secretion compared with all other groups, which was approximately 60% (1 µM) and 85% (10 µM) higher than that of the control group (23.3 ± 3.0 ng/ml). GRP at the lower concentration did not produce a statistically significant change in TSH secretion, whereas at the concentration of 10 µM it produced a 50% reduction in TSH. GRP co-incubated with substance P completely blocked the stimulatory effect of SP at both concentrations. Pituitary TSH content decreased in the SP-treated group compared to controls (0.75 ± 0.03 µg/hemipituitary) at the same proportion as the increase in TSH secretion, and this effect was also blocked when GRP and SP were co-incubated. In conclusion, in an in vitro system, SP increased TSH secretion acting directly at the pituitary level and this effect was blocked by GRP, suggesting that GRP is more potent than SP on TSH secretion, and that this inhibitory effect could be the predominant effect in vivo.
Resumo:
We examined some of the mechanisms by which the aspirin metabolite and the naturally occurring metabolite gentisic acid induced relaxation of the guinea pig trachea in vitro. In preparations with or without epithelium and contracted by histamine, gentisic acid caused concentration-dependent and reproducible relaxation, with mean EC50 values of 18 µM and Emax of 100% (N = 10) or 20 µM and Emax of 92% (N = 10), respectively. The relaxation caused by gentisic acid was of slow onset in comparison to that caused by norepinephrine, theophylline or vasoactive intestinal peptide (VIP). The relative rank order of potency was: salbutamol 7.9 > VIP 7.0 > gentisic acid 4.7 > theophylline 3.7. Gentisic acid-induced relaxation was markedly reduced (24 ± 7.0, 43 ± 3.9 and 78 ± 5.6%) in preparations with elevated potassium concentration in the medium (20, 40 or 80 mM, respectively). Tetraethylammonium (100 µM), a nonselective blocker of the potassium channels, partially inhibited the relaxation response to gentisic acid, while 4-AP (10 µM), a blocker of the voltage potassium channel, inhibited gentisic acid-induced relaxation by 41 ± 12%. Glibenclamide (1 or 3 µM), at a concentration which markedly inhibited the relaxation induced by the opener of ATP-sensitive K+ channels, levcromakalim, had no effect on the relaxation induced by gentisic acid. Charybdotoxin (0.1 or 0.3 µM), a selective blocker of the large-conductance Ca2+-activated K+ channels, caused rightward shifts (6- and 7-fold) of the gentisic acid concentration-relaxation curve. L-N G-nitroarginine (100 µM), a NO synthase inhibitor, had no effect on the relaxant effect of gentisic acid, and caused a slight displacement to the right in the relaxant effect of the gentisic acid curve at 300 µM, while methylene blue (10 or 30 µM) or ODQ (1 µM), the inhibitors of soluble guanylate cyclase, all failed to affect gentisic acid-induced relaxation. D-P-Cl-Phe6,Leu17[VIP] (0.1 µM), a VIP receptor antagonist, significantly inhibited (37 ± 7%) relaxation induced by gentisic acid, whereas CGRP (8-37) (0.1 µM), a CGRP antagonist, only slightly enhanced the action of gentisic acid. Taken together, these results provide functional evidence for the direct activation of voltage and large-conductance Ca+2-activated K+ channels, or indirect modulation of potassium channels induced by VIP receptors and accounts for the predominant relaxation response caused by gentisic acid in the guinea pig trachea.
Resumo:
Extensive neuronal cell loss is observed in Alzheimer's disease. Laminin immunoreactivity colocalizes with senile plaques, the characteristic extracellular histopathological lesions of Alzheimer brain, which consist of the amyloid ß (Aß) peptide polymerized into amyloid fibrils. These lesions have neurotoxic effects and have been proposed to be a main cause of neurodegeneration. In order to understand the pathological significance of the interaction between laminin and amyloid, we investigated the effect of laminin on amyloid structure and toxicity. We found that laminin interacts with the Aß1-40 peptide, blocking fibril formation and even inducing depolymerization of preformed fibrils. Protofilaments known to be intermediate species of Aß fibril formation were also detected as intermediate species of laminin-induced Aß fibril depolymerization. Moreover, laminin-amyloid interactions inhibited the toxic effects on rat primary hippocampal neurons. As a whole, our results indicate a putative anti-amyloidogenic role of laminin which may be of biological and therapeutic interest for controlling amyloidosis, such as those observed in cerebral angiopathy and Alzheimer's disease.