940 resultados para RNA sequence
Resumo:
We give a detailed construction of a finite-state transition system for a com-connected Message Sequence Graph. Though this result is well-known in the literature and forms the basis for the solution to several analysis and verification problems concerning MSG specifications, the constructions given in the literature are either not amenable to implementation, or imprecise, or simply incorrect. In contrast we give a detailed construction along with a proof of its correctness. Our transition system is amenable to implementation, and can also be used for a bounded analysis of general (not necessarily com-connected) MSG specifications.
Resumo:
With the immense growth in the number of available protein structures, fast and accurate structure comparison has been essential. We propose an efficient method for structure comparison, based on a structural alphabet. Protein Blocks (PBs) is a widely used structural alphabet with 16 pentapeptide conformations that can fairly approximate a complete protein chain. Thus a 3D structure can be translated into a 1D sequence of PBs. With a simple Needleman-Wunsch approach and a raw PB substitution matrix, PB-based structural alignments were better than many popular methods. iPBA web server presents an improved alignment approach using (i) specialized PB Substitution Matrices (SM) and (ii) anchor-based alignment methodology. With these developments, the quality of similar to 88% of alignments was improved. iPBA alignments were also better than DALI, MUSTANG and GANGSTA(+) in > 80% of the cases. The webserver is designed to for both pairwise comparisons and database searches. Outputs are given as sequence alignment and superposed 3D structures displayed using PyMol and Jmol. A local alignment option for detecting subs-structural similarity is also embedded. As a fast and efficient `sequence-based' structure comparison tool, we believe that it will be quite useful to the scientific community. iPBA can be accessed at http://www.dsimb.inserm.fr/dsimb_tools/ipba/.
Resumo:
The Walker sequence, GXXXXGKT, present in all the six subunits of F-1-ATPase exists in a folded form, known as phosphate-binding loop (P-loop). Analysis of the Ramachandran angles showed only small RMS deviation between the nucleotide-bound and nucleotide-free forms. This indicated a good overlap of the backbone loops. The catalytic beta-subunits (chains D, E and F) showed significant changes in the Ramachandran angles and the side chain torsion angles, but not the structural alpha-subunits (chains A, B and C). Most striking among these are the changes associated with Val160 and Gly161 corresponding to a flip in the peptide unit between them when a nucleotide is bound (chains D or F compared to nucleotide-free chain E). The conformational analysis further revealed a hitherto unnoticed hydrogen bond between amide-N of the flipped Gly161 and terminal phosphate-O of the nucleotide. This assigns a role for this conserved amino acid, otherwise ignored, of making an unusual direct interaction between the peptide backbone of the enzyme protein and the incoming nucleotide substrate. Significance of this interaction is enhanced, as it is limited only to the catalytic subunits, and also likely to involve a mechanical rotation of bonds of the peptide unit. Hopefully this is part of the overall events that link the chemical hydrolysis of ATP with the mechanical rotation of this molecule, now famous as tiny molecular motor.
Resumo:
Rv2118c belongs to the class of conserved hypothetical proteins from Mycobacterium tuberculosis H37Rv. The crystal structure of Rv2118c in complex with S-adenosyl-Image -methionine (AdoMet) has been determined at 1.98 Å resolution. The crystallographic asymmetric unit consists of a monomer, but symmetry-related subunits interact extensively, leading to a tetrameric structure. The structure of the monomer can be divided functionally into two domains: the larger catalytic C-terminal domain that binds the cofactor AdoMet and is involved in the transfer of methyl group from AdoMet to the substrate and a smaller N-terminal domain. The structure of the catalytic domain is very similar to that of other AdoMet-dependent methyltransferases. The N-terminal domain is primarily a β-structure with a fold not found in other methyltransferases of known structure. Database searches reveal a conserved family of Rv2118c-like proteins from various organisms. Multiple sequence alignments show several regions of high sequence similarity (motifs) in this family of proteins. Structure analysis and homology to yeast Gcd14p suggest that Rv2118c could be an RNA methyltransferase, but further studies are required to establish its functional role conclusively.
Resumo:
The protein MsRbpA from Mycobacterium smegmatis rescues RNA polymerase (RNAP) from the inhibitory effect of rifampicin (Rif). We have reported previously that MsRbpA interacts with the beta-subunit of RNAP and that the effect of MsRbpA on Rif-resistant (Rif(R)) RNAP is minimal. Here we attempted to gain molecular insights into the mechanism of action of this protein with respect to its role in rescuing RNAP from Rif-mediated transcription inhibition. Our experimental approach comprised multiple-round transcription assays, fluorescence spectroscopy, MS and surface plasmon resonance in order to meet the above objective. Based on our molecular studies we propose here that Rif is released from its binding site in the RNAP-Rif complex in the presence of MsRbpA. Biophysical studies reveal that the location of MsRbpA on RNAP is at the junction of the beta- and beta'-subunits, close to the Rif-binding site and the (i + 1) site on RNAP.
Resumo:
A simple and convenient tandem methodology for the enantiospecific generation of functionalised bicyclo[3.3.1] nonanes 9,14-18, via intermolecular alkylation of Michael donors with 10-bromocarvones 7, 10 and 11, followed by intramolcular Michael addition, is achieved. An unsuccessful attempt for the extension of the methodology for a possible short enantiospecific approach to AB-ring system 22 of taxanes via the allyl bromide 21, is also described.
Resumo:
Two families of low correlation QAM sequences are presented here. In a CDMA setting, these sequences have the ability to transport a large amount of data as well as enable variable-rate signaling on the reverse link. The first family Á2SQ - B2− is constructed by interleaving 2 selected QAM sequences. This family is defined over M 2-QAM, where M = 2 m , m ≥ 2. Over 16-QAM, the normalized maximum correlation [`(q)]maxmax is bounded above by <~1.17 ÖNUnknown control sequence '\lesssim' , where N is the period of the sequences in the family. This upper bound on [`(q)]maxmax is the lowest among all known sequence families over 16-QAM.The second family Á4SQ4 is constructed by interleaving 4 selected QAM sequences. This family is defined over M 2-QAM, where M = 2 m , m ≥ 3, i.e., 64-QAM and beyond. The [`(q)]maxmax for sequences in this family over 64-QAM is upper bounded by <~1.60 ÖNUnknown control sequence '\lesssim' . For large M, [`(q)]max <~1.64 ÖNUnknown control sequence '\lesssim' . These upper bounds on [`(q)]maxmax are the lowest among all known sequence families over M 2-QAM, M = 2 m , m ≥ 3.
Resumo:
Conventional hardware implementation techniques for FIR filters require the computation of filter coefficients in software and have them stored in memory. This approach is static in the sense that any further fine tuning of the filter requires computation of new coefficients in software. In this paper, we propose an alternate technique for implementing FIR filters in hardware. We store a considerably large number of impulse response coefficients of the ideal filter (having box type frequency response) in memory. We then do the windowing process, on these coefficients, in hardware using integer sequences as window functions. The integer sequences are also generated in hardware. This approach offers the flexibility in fine tuning the filter, like varying the transition bandwidth around a particular cutoff frequency.
Resumo:
The synthesis of dsRNA is analyzed using a pathway model with amplifications caused by the aberrant RNAs. The transgene influx rate is assumed time-decaying considering the fact that the number of transgenes can not be infinite. The dynamics of the transgene induced RNA silencing is investigated using a system of coupled nonautonomous ordinary nonlinear differential equations which describe the model phenomenologically. The silencing phenomena are detected after a period of transcription. Important contributions of certain parameters are discussed with several numerical examples.