954 resultados para RIBOSOMAL-RNA AMPLIFICATION
Resumo:
Approximately 520 Wilson disease-causing mutations in the ATP7B gene have been described to date. In this study we report DNA and RNA analyses carried out for molecular characterization of a consensus sequence splicing mutation found in homozygosity in a Swiss Wilson disease patient. RNA analysis of 1946 +6 T→C in both the peripheral lymphoblasts and liver resulted in the production in the propositus of only an alternative transcript lacking exons 6, 7, and 8 resulting most likely in alterations of cell biochemistry and disease. The patient presents an early form of severe hepatic disease characterized by hepatosplenomegaly, reduced hepatic function, anemia and thrombocytopenia indicating that 1946 +6 T→C is a severe mutation. Since identical results were obtained from both peripheral lymphoblasts and liver they also suggest that RNA studies of illegitimate transcripts can be safely used for molecular characterization of ATP7B splicing mutations, thus improving genetic counseling and diagnosis of Wilson disease. Moreover these studies, contribute to reveal the exact molecular mechanisms producing Wilson disease.
Resumo:
Summary Multicellular organisms have evolved the immune system to protect from pathogen such as viruses, bacteria, fungi or parasites. Detection of invading pathogens by the host innate immune system is crucial for mounting protective responses and depends on the recognition of microbial components by specific receptors. The results presented in this manuscript focus on the signaling pathways involved in the detection of viral infection by the sensing of viral nucleic acids. First, we describe a new regulatory mechanism controlling RNA-sensing antiviral pathways. Our results indicate that TRIF and Cardif, the crucial adaptor proteins for endosomal and cytoplasmic RNA detection signaling pathway, are processed and inactivated by caspases. The second aspect investigated here involves a signaling pathway triggered upon cytosolic DNA sensing. The interferon inducible protein DAI was recently described as a DNA sensor able to induce the activation of IRFs and NF-κΒ transcription factors leading to type I interferon production. Here we identify two RIP homotypic interaction motifs (RHIMs) in DAI and demonstrate that they mediate the recruitment of RIP1 and RIP3 and the subsequent NF-κΒ activation. Moreover, we observed that the mouse cytomegalovirus RHIM- containing protein M45 has the potential to block this signaling cascade by interfering with the formation of the DAI-RIP1/3 signaling complex. Finally, we report the generation and the initial characterization of NLRX1-deficient mice. NLRX1 is a member of the NOD-like receptor family localized to the mitochondria. The function of NLRX1 is still controversial: one study proposed that NLRX1 acts as an inhibitor of the RIG-like receptor (RLR) antiviral pathway by binding the adaptor protein Cardif, whereas another report implicated NLRX1 in the generation of reactive oxygen species (ROS) and the amplification of NF-κΒ and JNK triggered by TNF-α, poly(I:C) or Shigella infection. Collectively, our results indicate that NLRX1-deficiency does not affect RLR signaling nor TNF-α induced responses. Proteomics analysis identified UQCRC2, a subunit of the complex III of the mitochondrial respiratory chain, as a NLRX1 binding partner. This observation might reveal a possible functional link between NLRX1 and mitochondrial respiration and/or ROS generation. Résumé Au cours de l'évolution, les organismes multicellulaires ont développé le système immunitaire afin de se protéger contre les pathogènes. Une étape cruciale pour le déclenchement des réponses protectrices est la reconnaissance par les cellules du système immunitaire de molécules propres aux microbes grâce à des récepteurs spécifiques. Les résultats présentés dans cette thèse décrivent des nouveaux aspects concernant les voies de signalisation impliquées dans la détection des virus. Le premier projet décrit un mécanisme de régulation des voies activées par la détection d'ARN virale. Nos résultats montrent que TRIF et Cardif, des protéines adaptatrices des voies déclenchées par la reconnaissance de ces acides nucléiques au niveau des endosomes et du cytoplasme, sont clivés et inactivés par les caspases. Le projet suivant de notre recherche concerne une voie de signalisation activée par la détection d'ADN au niveau du cytoplasme. La protéine DAI a été récemment décrite comme un senseur pour cet ADN capable d'activer les facteurs de transcription IRF et NF-κΒ et d'induire ainsi la production des interférons de type I. Ici on démontre que DAI interagit avec RIP1 et RIP3 par le biais de domaines appelés RHIM et que ce complexe est responsable de l'activation de NF-κΒ. On a aussi identifié une protéine du cytomégalovirus de la souris, M45, qui contient ce même domaine et on a pu démontrer qu'elle a la capacité d'interférer avec la formation du complexe entre DAI et RIP1/RIP3 bloquant ainsi l'activation de NF-κΒ. Enfin on décrit ici la génération de souris déficientes pour le gène qui code pour la protéine NLRX1. Cette protéine fait partie de la famille des récepteurs NOD et est localisée dans la mitochondrie. Une étude a suggéré que NLRX1 agit comme un inhibiteur des voies antivirales activées par les récepteurs du type RIG-I (RLR) en interagissant avec la protéine adaptatrice Cardif. Une autre étude propose par contre que NLRX1 participe à la production des dérivés réactifs de l'oxygène et contribue ainsi à augmenter l'activation de NF- κΒ et JNK induite par le TNF-α ou le poly(I:C). Nos résultats montrent que l'absence de NLRX1 ne modifie ni la voie de signalisation RLR ni les réponses induites par le TNF-α. Des analyses ultérieures ont permis d'identifier comme partenaire d'interaction de NLRX1 la protéine UQCRC2, une des sous-unités qui composent le complexe III de la chaîne respiratoire mitochondriale. Cette observation pourrait indiquer un lien fonctionnel entre NLRX1 et la respiration mitochondriale ou la production des dérivés réactifs de l'oxygène au niveau de cette organelle.
Resumo:
The nose-horned viper (Vipera ammodytes) occurs in a large part of the south-eastern Europe and Asia Minor. Phylogenetic relationships were reconstructed for a total of 59 specimens using sequences from three mitochondrial regions (16S and cytochrome b genes, and control region, totalling 2308 bp). A considerable number of clades were observed within this species, showing a large genetic diversity within the Balkan peninsula. Splitting of the basal clades was evaluated to about 4 million years ago. Genetic results are in contradiction with presently accepted taxonomy based on morphological characters: V. a. gregorwallneri and V. a. ruffoi do not display any genetic difference compared with the nominotypic subspecies (V. a. ammodytes), involving that these subspecies can be regarded as synonyms. High genetic divergence in the central part of the Balkan peninsula is not concordant with low morphological differentiation. Finally, the extensive genetic diversity within the Balkan peninsula and the colonisation routes are discussed
Resumo:
Our view of the RNA polymerase III (Pol III) transcription machinery in mammalian cells arises mostly from studies of the RN5S (5S) gene, the Ad2 VAI gene, and the RNU6 (U6) gene, as paradigms for genes with type 1, 2, and 3 promoters. Recruitment of Pol III onto these genes requires prior binding of well-characterized transcription factors. Technical limitations in dealing with repeated genomic units, typically found at mammalian Pol III genes, have so far hampered genome-wide studies of the Pol III transcription machinery and transcriptome. We have localized, genome-wide, Pol III and some of its transcription factors. Our results reveal broad usage of the known Pol III transcription machinery and define a minimal Pol III transcriptome in dividing IMR90hTert fibroblasts. This transcriptome consists of some 500 actively transcribed genes including a few dozen candidate novel genes, of which we confirmed nine as Pol III transcription units by additional methods. It does not contain any of the microRNA genes previously described as transcribed by Pol III, but reveals two other microRNA genes, MIR886 (hsa-mir-886) and MIR1975 (RNY5, hY5, hsa-mir-1975), which are genuine Pol III transcription units.
Resumo:
Cells are subjected to dramatic changes of gene expression upon environmental changes. Stresscauses a general down-regulation of gene expression together with the induction of a set of stress-responsivegenes. The p38-related stress-activated protein kinase Hog1 is an important regulator of transcription uponosmostress in yeast. Genome-wide localization studies of RNA polymerase II (RNA Pol II) and Hog1 showed that stress induced major changes in RNA Pol II localization, with a shift toward stress-responsive genes relative to housekeeping genes. RNA Pol II relocalization required Hog1, which was also localized to stress-responsive loci. In addition to RNA Pol II-bound genes, Hog1 also localized to RNA polymerase III-bound genes, pointing to a wider role for Hog1 in transcriptional control than initially expected. Interestingly, an increasing association of Hog1 with stressresponsive genes was strongly correlated with chromatin remodeling and increased gene expression. Remarkably, MNase-Seq analysis showed that although chromatin structure was not significantly altered at a genome-wide level in response to stress, there was pronounced chromatin remodeling for those genes that displayed Hog1 association. Hog1 serves to bypass the general down-regulation of gene expression that occurs in response to osmostress, and does so both by targeting RNA Pol II machinery and by inducing chromatin remodeling at stressresponsive loci.
Resumo:
Interleukin-1 receptor antagonist (IL-1ra) gene polymorphisms in 83 human immunodeficiency virus (HIV)-seropositive women were evaluated. Fourteen of the subjects (16.9%) were homozygous for IL-1ra allele 2 (IL-1RN*2). These women had a lower median level of HIV RNA than did women homozygous for allele 1 (IL-1RN*1) (P = 0.01) or heterozygous for both alleles (P = 0.04). Among 46 subjects not receiving antiretroviral treatment, HIV levels were also reduced in IL-1RN*2 homozygous individuals (P < 0.05). There was no relation between IL-1ra alleles and CD4 levels.
Resumo:
Gene set enrichment (GSE) analysis is a popular framework for condensing information from gene expression profiles into a pathway or signature summary. The strengths of this approach over single gene analysis include noise and dimension reduction, as well as greater biological interpretability. As molecular profiling experiments move beyond simple case-control studies, robust and flexible GSE methodologies are needed that can model pathway activity within highly heterogeneous data sets. To address this challenge, we introduce Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner. We demonstrate the robustness of GSVA in a comparison with current state of the art sample-wise enrichment methods. Further, we provide examples of its utility in differential pathway activity and survival analysis. Lastly, we show how GSVA works analogously with data from both microarray and RNA-seq experiments. GSVA provides increased power to detect subtle pathway activity changes over a sample population in comparison to corresponding methods. While GSE methods are generally regarded as end points of a bioinformatic analysis, GSVA constitutes a starting point to build pathway-centric models of biology. Moreover, GSVA contributes to the current need of GSE methods for RNA-seq data. GSVA is an open source software package for R which forms part of the Bioconductor project and can be downloaded at http://www.bioconductor.org.
Resumo:
We describe the effect of guanidinylation of the aminoglycoside moiety on acridine-neamine-containing ligands for the stem-loop structure located at the exon 10-5′-intron junction of Tau pre-mRNA, an important regulatory element of tau gene alternative splicing. On the basis of dynamic combinatorial chemistry experiments, ligands that combine guanidinoneamine and two different acridines were synthesized and their RNA-binding properties were compared with those of their amino precursors. Fluorescence titration experiments and UV-monitored melting curves revealed that guanidinylation has a positive effect both on the binding affinity and specificity of the ligands for the stemloop RNA, as well as on the stabilization of all RNA sequences evaluated, particularly some mutated sequences associated with the development of FTDP-17 tauopathy. However, this correlation between binding affinity and stabilization due to guanidinylation was only found in ligands containing a longer spacer between the acridine and guanidinoneamine moieties, since a shorter spacer produced the opposite effect (e.g. lower binding affinity and lower stabilization). Furthermore, spectroscopic studies suggest that ligand binding does not significantly change the overall RNA structure upon binding (circular dichroism) and that the acridine moiety might intercalate near the bulged region of the stem->loop structure (UV-Vis and NMR spectroscopy).
Resumo:
High systemic levels of IP-10 at onset of combination therapy for chronic hepatitis C mirror intrahepatic mRNA levels and predict a slower first phase decline in HCV RNA as well as poor outcome. Recently several genome wide association studies have revealed that single nucleotide polymorphisms (SNPs) on chromosome19 within proximity of IL28B predict spontaneous clearance of HCV infection and as therapeutic outcome among patients infected with HCV genotype 1, with three such SNPs being highly predictive: rs12979860, rs12980275, and rs8099917. In the present study, we correlated genetic variations in these SNPs from 253 Caucasian patients with pretreatment plasma levels of IP-10 and HCV RNA throughout therapy within a phase III treatment trial (HCV-DITTO). The favorable genetic variations in all three SNPs (CC, AA, and TT respectively) was significantly associated with lower baseline IP-10 (CC vs. CT/TT at rs12979860: median 189 vs. 258 pg/mL, P=0.02, AA vs. AG/GG at rs12980275: median 189 vs. 258 pg/mL, P=0.01, TT vs. TG/GG at rs8099917: median 224 vs. 288 pg/mL, P=0.04), were significantly less common among HCV genotype 1 infected patients than genotype 2/3 (P<0.0001, P<0.0001, and P=0.01 respectively) and had significantly higher baseline viral load than carriers of the SNP genotypes (6.3 vs. 5.9 log 10 IU/mL, P=0.0012, 6.3 vs. 6.0 log 10 IU/mL, P=0.026, and 6.3 vs. 5.8 log 10 IU/mL, P=0.0003 respectively). Among HCV genotype 1 infected homozygous or heterogeneous carriers of the favorable C, A, and T genotypes, lower baseline IP-10 was significantly associated with greater decline in HCV-RNA day 0-4, which translated into increased rates of achieving SVR among homozygous patients with baseline IP-10 below 150 pg/mL (85%, 75%, and 75% respectively). In a multivariate analysis among genotype 1 infected patients, both baseline IP-10 and the SNPs were significant independent predictors of SVR. Conclusion: Baseline plasma IP-10 is significantly associated with IL28B variations, and augments the predictiveness of the first phase decline in HCV RNA and final treatment outcome.
Resumo:
BACKGROUND: Strategies leading to the long-term suppression of inappropriate ocular angiogenesis are required to avoid the need for repetitive monthly injections for treatment of diseases of the eye, such as age-related macular degeneration (AMD). The present study aimed to develop a strategy for the sustained repression of vascular endothelial growth factor (VEGF), which is identified as the key player in exudative AMD. METHODS: We have employed short hairpin (sh)RNAs combined with adeno-associated virus (AAV) delivery to obtain the targeted expression of potent gene-regulatory molecules. Anti-VEGF shRNAs were analyzed in human retinal pigment epithelial (RPE) cells using Renilla luciferase screening. For in vivo delivery of the most potent shRNA, self-complementary AAV vectors were packaged in serotype 8 capsids (scAAV2/8-hU6-sh9). In vivo efficacy was evaluated either by injection of scAAV2/8-hU6-sh9 into murine hind limb muscles or in a laser-induced murine model of choroidal neovascularization (CNV) following scAAV2/8-hU6-sh9 subretinal delivery. RESULTS: Plasmids encoding anti-VEGF shRNAs showed efficient knockdown of human VEGF in RPEs. Intramuscular administration led to localized expression and 91% knockdown of endogenous murine (m)VEGF. Subsequently, the ability of AAV2/8-encoded shRNAs to impair vessel formation was evaluated in the murine model of CNV. In this model, the sizes of the CNV were significantly reduced (up to 48%) following scAAV2/8-hU6-sh9 subretinal delivery. CONCLUSIONS: Using anti-VEGF vectors, we have demonstrated efficient silencing of endogenous mVEGF and showed that subretinal administration of scAAV2/8-hU6-sh9 has the ability to impair vessel formation in an AMD animal model. Thus, AAV-encoded shRNA can be used for the inhibition of neovascularization, leading to the development of sustained anti-VEGF therapy. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
BACKGROUND AND AIMS: The genus Olea (Oleaceae) includes approx. 40 taxa of evergreen shrubs and trees classified in three subgenera, Olea, Paniculatae and Tetrapilus, the first of which has two sections (Olea and Ligustroides). Olive trees (the O. europaea complex) have been the subject of intensive research, whereas little is known about the phylogenetic relationships among the other species. To clarify the biogeographical history of this group, a molecular analysis of Olea and related genera of Oleaceae is thus necessary. METHODS: A phylogeny was built of Olea and related genera based on sequences of the nuclear ribosomal internal transcribed spacer-1 and four plastid regions. Lineage divergence and the evolution of abaxial peltate scales, the latter character linked to drought adaptation, were dated using a Bayesian method. KEY RESULTS: Olea is polyphyletic, with O. ambrensis and subgenus Tetrapilus not sharing a most recent common ancestor with the main Olea clade. Partial incongruence between nuclear and plastid phylogenetic reconstructions suggests a reticulation process in the evolution of subgenus Olea. Estimates of divergence times for major groups of Olea during the Tertiary were obtained. CONCLUSIONS: This study indicates the necessity of revising current taxonomic boundaries in Olea. The results also suggest that main lines of evolution were promoted by major Tertiary climatic shifts: (1) the split between subgenera Olea and Paniculatae appears to have taken place at the Miocene-Oligocene boundary; (2) the separation of sections Ligustroides and Olea may have occurred during the Early Miocene following the Mi-1 glaciation; and (3) the diversification within these sections (and the origin of dense abaxial indumentum in section Olea) was concomitant with the aridification of Africa in the Late Miocene.
Resumo:
The transcription factors TFIIB, Brf1, and Brf2 share related N-terminal zinc ribbon and core domains. TFIIB bridges RNA polymerase II (Pol II) with the promoter-bound preinitiation complex, whereas Brf1 and Brf2 are involved, as part of activities also containing TBP and Bdp1 and referred to here as Brf1-TFIIIB and Brf2-TFIIIB, in the recruitment of Pol III. Brf1-TFIIIB recruits Pol III to type 1 and 2 promoters and Brf2-TFIIIB to type 3 promoters such as the human U6 promoter. Brf1 and Brf2 both have a C-terminal extension absent in TFIIB, but their C-terminal extensions are unrelated. In yeast Brf1, the C-terminal extension interacts with the TBP/TATA box complex and contributes to the recruitment of Bdp1. Here we have tested truncated Brf2, as well as Brf2/TFIIB chimeric proteins for U6 transcription and for assembly of U6 preinitiation complexes. Our results characterize functions of various human Brf2 domains and reveal that the C-terminal domain is required for efficient association of the protein with U6 promoter-bound TBP and SNAP(c), a type 3 promoter-specific transcription factor, and for efficient recruitment of Bdp1. This in turn suggests that the C-terminal extensions in Brf1 and Brf2 are crucial to specific recruitment of Pol III over Pol II.
Resumo:
In many species, the introduction of double-stranded RNA induces potent and specific gene silencing, referred to as RNA interference. This phenomenon, which is based on targeted degradation of mRNAs and occurs in almost any eukaryote, from trypanosomes to mice including plants and fungi, has sparked general interest from both applied and fundamental standpoints. RNA interference, which is currently used to investigate gene function in a variety of systems, is linked to natural resistance to viruses and transposon silencing, as if it were a primitive immune system involved in genome surveillance. Here, we review the mechanism of RNA interference in post-transcriptional gene silencing, its function in nature, its value for functional genomic analysis, and the modifications and improvements that may make it more efficient and inheritable. We also discuss the future directions of this versatile technique in both fundamental and applied science.