836 resultados para Queensland University of Technology, Visual Arts
Resumo:
Report on a special investigation of the University of Northern Iowa, College of Education – Curriculum and Instruction Department for the period January 1, 2012 through October 31, 2014
Resumo:
Report on a review of selected general and application controls over the State University of Iowa MAUI Student Financial Aid system for the period May 19, 2014 through July 31, 2014
Resumo:
Report on a review of selected general and application controls over the University of Northern Iowa Facility Administration and Maintenance Information System for the period April 29, 2014 through June 5, 2014
Resumo:
Audit report of the State University of Iowa, Iowa City, Iowa, (University of Iowa) for the years ended June 30, 2015 and 2014
Resumo:
Audit report of the University of Northern Iowa, Cedar Falls, Iowa, as of and for the years ended June 30, 2015 and 2014
Resumo:
Report on a review of selected general and application controls over the State University of Iowa PeopleSoft Human Resources Information System (HRIS) for the period May 11, 2015 through July 31, 2015
Resumo:
Report on a review of selected general and application controls over the University of Northern Iowa’s eBusiness Payroll and Human Resources System for the period April 1, 2015 through May 27, 2015
Resumo:
We present in this paper the results of the application of several visual methods on a group of locations, dated between VI and I centuries BC, of the ager Tarraconensis (Tarragona, Spain) a Hinterland of the roman colony of Tarraco. The difficulty in interpreting the diverse results in a combined way has been resolved by means of the use of statistical methods, such as Principal Components Analysis (PCA) and K-means clustering analysis. These methods have allowed us to carry out site classifications in function of the landscape's visual structure that contains them and of the visual relationships that could be given among them.
Resumo:
Bibliografia Turun yliopiston tieteellisestä julkaisutoiminnasta vuodelta 2006.
Resumo:
The suitable timing of capacity investments is a remarkable issue especially in capital intensive industries. Despite its importance, fairly few studies have been published on the topic. In the present study models for the timing of capacity change in capital intensive industry are developed. The study considers mainly the optimal timing of single capacity changes. The review of earlier research describes connections between cost, capacity and timing literature, and empirical examples are used to describe the starting point of the study and to test the developed models. The study includes four models, which describe the timing question from different perspectives. The first model, which minimizes unit costs, has been built for capacity expansion and replacement situations. It is shown that the optimal timing of an investment can be presented with the capacity and cost advantage ratios. After the unit cost minimization model the view is extended to the direction of profit maximization. The second model states that early investments are preferable if the change of fixed costs is small compared to the change of the contribution margin. The third model is a numerical discounted cash flow model, which emphasizes the roles of start-up time, capacity utilization rate and value of waiting as drivers of the profitable timing of a project. The last model expands the view from project level to company level and connects the flexibility of assets and cost structures to the timing problem. The main results of the research are the solutions of the models and analysis or simulations done with the models. The relevance and applicability of the results are verified by evaluating the logic of the models and by numerical cases.
Resumo:
The integration of electric motors and industrial appliances such as pumps, fans, and compressors is rapidly increasing. For instance, the integration of an electric motor and a centrifugal pump provides cost savings and improved performance characteristics. Material cost savings are achieved when an electric motor is integrated into the shaft of a centrifugal pump, and the motor utilizes the bearings of the pump. This arrangement leads to a smaller configuration that occupies less floor space. The performance characteristics of a pump drive can be improved by using the variable-speed technology. This enables the full speed control of the drive and the absence of a mechanical gearbox and couplers. When using rotational speeds higher than those that can be directly achieved by the network frequency the structure of the rotor has to be mechanically durable. In this thesis the performance characteristics of an axial-flux solid-rotor-core induction motor are determined. The motor studied is a one-rotor-one-stator axial-flux induction motor, and thus, there is only one air-gap between the rotor and the stator. The motor was designed for higher rotational speeds, and therefore a good mechanical strength of the solid-rotor-core rotor is required to withstand the mechanical stresses. The construction of the rotor and the high rotational speeds together produce a feature, which is not typical of traditional induction motors: the dominating loss component of the motor is the rotor eddy current loss. In the case of a typical industrial induction motor instead the dominating loss component is the stator copper loss. In this thesis, several methods to decrease the rotor eddy current losses in the case of axial-flux induction motors are presented. A prototype motor with 45 kW output power at 6000 min-1 was designed and constructed for ascertaining the results obtained from the numerical FEM calculations. In general, this thesis concentrates on the methods for improving the electromagnetic properties of an axial-flux solid-rotor-core induction motor and examines the methods for decreasing the harmonic eddy currents of the rotor. The target is to improve the efficiency of the motor and to reach the efficiency standard of the present-day industrial induction motors equipped with laminated rotors.
Resumo:
The rotational speed of high-speed electric machines is over 15 000 rpm. These machines are compact in size when compared to the power rate. As a consequence, the heat fluxes are at a high level and the adequacy of cooling becomes an important design criterion. In the high-speed machines, the air gap between the stator and rotor is a narrow flow channel. The cooling air is produced with a fan and the flow is then directed to the air gap. The flow in the gap does not provide sufficient cooling for the stator end windings, and therefore additional cooling is required. This study investigates the heat transfer and flow fields around the coil end windings when cooling jets are used. As a result, an innovative and new assembly is introduced for the cooling jets, with the benefits of a reduced amount of hot spots, a lower pressure drop, and hence a lower power need for the cooling fan. The gained information can also be applied to improve the cooling of electric machines through geometry modifications. The objective of the research is to determine the locations of the hot spots and to find out induced pressure losses with different jet alternatives. Several possibilities to arrange the extra cooling are considered. In the suggested approach cooling is provided by using a row of air jets. The air jets have three main tasks: to cool the coils effectively by direct impingement jets, to increase and cool down the flow that enters the coil end space through the air gap, and to ensure the correct distribution of the flow by forming an air curtain with additional jets. One important aim of this study is the arrangement of cooling jets in such manner that hot spots can be avoided to wide extent. This enables higher power density in high-speed motors. This cooling system can also be applied to the ordinary electric machines when efficient cooling is needed. The numerical calculations have been performed using a commercial Computational Fluid Dynamics software. Two geometries have been generated: cylindrical for the studied machine and Cartesian for the experimental model. The main parameters include the positions, arrangements and number of jets, the jet diameters, and the jet velocities. The investigated cases have been tested with two widely used turbulence models and using a computational grid of over 500 000 cells. The experimental tests have been made by using a simplified model for the end winding space with cooling jets. In the experiments, an emphasis has been given to flow visualisation. The computational analysis shows good agreement with the experimental results. Modelling of the cooling jet arrangement enables also a better understanding of the complex system of heat transfer at end winding space.
Resumo:
This 45th volume deals with the development of the Russian rouble, which suffered a severe depreciation crisis in 1998. In the aftermath of this event, a strong investment boom started in Russia. The new devalued rouble exchange rate gave price competitiveness to local industry. In addition to that, increasing export prices of Russian oil and natural gas deliveries have contributed to economic growth lately. Amid this boom period, inflationary pressure has remained high. Price increases have been higher than in the EU, Russia’s main trading partner. However, rouble/euro exchange rate has remained nominally rather stable in the current decade. This means, that rouble appreciates against euro in real terms, which is weakening Russia’s international competitiveness.
Resumo:
The safe use of nuclear power plants (NPPs) requires a deep understanding of the functioning of physical processes and systems involved. Studies on thermal hydraulics have been carried out in various separate effects and integral test facilities at Lappeenranta University of Technology (LUT) either to ensure the functioning of safety systems of light water reactors (LWR) or to produce validation data for the computer codes used in safety analyses of NPPs. Several examples of safety studies on thermal hydraulics of the nuclear power plants are discussed. Studies are related to the physical phenomena existing in different processes in NPPs, such as rewetting of the fuel rods, emergency core cooling (ECC), natural circulation, small break loss-of-coolant accidents (SBLOCA), non-condensable gas release and transport, and passive safety systems. Studies on both VVER and advanced light water reactor (ALWR) systems are included. The set of cases include separate effects tests for understanding and modeling a single physical phenomenon, separate effects tests to study the behavior of a NPP component or a single system, and integral tests to study the behavior of the whole system. In the studies following steps can be found, not necessarily in the same study. Experimental studies as such have provided solutions to existing design problems. Experimental data have been created to validate a single model in a computer code. Validated models are used in various transient analyses of scaled facilities or NPPs. Integral test data are used to validate the computer codes as whole, to see how the implemented models work together in a code. In the final stage test results from the facilities are transferred to the NPP scale using computer codes. Some of the experiments have confirmed the expected behavior of the system or procedure to be studied; in some experiments there have been certain unexpected phenomena that have caused changes to the original design to avoid the recognized problems. This is the main motivation for experimental studies on thermal hydraulics of the NPP safety systems. Naturally the behavior of the new system designs have to be checked with experiments, but also the existing designs, if they are applied in the conditions that differ from what they were originally designed for. New procedures for existing reactors and new safety related systems have been developed for new nuclear power plant concepts. New experiments have been continuously needed.