978 resultados para Quantum-mechanical calculation
Resumo:
Condensation technique of degree of freedom is firstly proposed to improve the computational efficiency of meshfree method with Galerkin weak form. In present method, scattered nodes without connectivity are divided into several subsets by cells with arbitrary shape. The local discrete equations are established over each cell by using moving kriging interpolation, in which the nodes that located in the cell are used for approximation. Then, the condensation technique can be introduced into the local discrete equations by transferring equations of inner nodes to equations of boundary nodes based on cell. In the scheme of present method, the calculation of each cell is carried out by meshfree method with Galerkin weak form, and local search is implemented in interpolation. Numerical examples show that the present method has high computational efficiency and convergence, and good accuracy is also obtained.
Resumo:
Filopodial protrusion initiates cell migration, which decides the fate of cells in biological environments. In order to understand the structural stability of ultra-slender filopodial protrusion, we have developed an explicit modeling strategy that can study both static and dynamic characteristics of microfilament bundles. Our study reveals that the stability of filopodial protrusions is dependent on the density of F-actin crosslinkers. This cross-linkage strategy is a requirement for the optimization of cell structures, resulting in the provision and maintenance of adequate bending stiffness and buckling resistance while mediating the vibration. This cross-linkage strategy explains the mechanical stability of filopodial protrusion and helps understand the mechanisms of mechanically induced cellular activities.
Resumo:
Tissue engineering focuses on the repair and regeneration of tissues through the use of biodegradable scaffold systems that structurally support regions of injury whilst recruiting and/or stimulating cell populations to rebuild the target tissue. Within bone tissue engineering, the effects of scaffold architecture on cellular response have not been conclusively characterized in a controlled-density environment. We present a theoretical and practical assessment of the effects of polycaprolactone (PCL) scaffold architectural modifications on mechanical and flow characteristics as well as MC3T3-E1 preosteoblast cellular response in an in vitro static plate and custom-designed perfusion bioreactor model. Four scaffold architectures were contrasted, which varied in inter-layer lay-down angle and offset between layers, whilst maintaining a structural porosity of 60 ± 5%. We established that as layer angle was decreased (90° vs. 60°) and offset was introduced (0 vs. 0.5 between layers), structural stiffness, yield stress, strength, pore size and permeability decreased, whilst computational fluid dynamics-modeled wall shear stress was increased. Most significant effects were noted with layer offset. Seeding efficiencies in static culture were also dramatically increased due to offset (~45% to ~86%), with static culture exhibiting a much higher seeding efficiency than perfusion culture. Scaffold architecture had minimal effect on cell response in static culture. However, architecture influenced osteogenic differentiation in perfusion culture, likely by modifying the microfluidic environment.
Resumo:
Compromised angiogenesis appears to be a major limitation in various suboptimal bone healing situations. Appropriate mechanical stimuli support blood vessel formation in vivo and improve healing outcomes. However, the mechanisms responsible for this association are unclear. To address this question, the paracrine angiogenic potential of early human fracture haematoma and its responsiveness to mechanical loading, as well as angiogenic growth factors involved, were investigated in vitro. Human haematomas were collected from healthy patients undergoing surgery within 72. h after bone fracture. The haematomas were embedded in a fibrin matrix, and cultured in a bioreactor resembling the in vivo conditions of the early phase of bone healing (20 compression, 1. Hz) over 3. days. Conditioned medium (CM) from the bioreactor was then analyzed. The matrices were also incubated in fresh medium for a further 24. h to evaluate the persistence of the effects. Growth factor (GF) concentrations were measured in the CM by ELISAs. In vitro tube formation assays were conducted on Matrigel with the HMEC-1 cell line, with or without inhibition of vascular endothelial growth factor receptor 2 (VEGFR2). Cell numbers were quantified using an MTS test. In vitro endothelial tube formation was enhanced by CM from haematomas, compared to fibrin controls. The angiogenesis regulators, vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGF-β1), were released into the haematoma CM, but not angiopoietins 1 or 2 (Ang1, 2), basic fibroblast growth factor (bFGF) or platelet-derived growth factor (PDGF). Mechanical stimulation of haematomas, but not fibrin controls, further increased the induction of tube formation by their CM. The mechanically stimulated haematoma matrices retained their elevated pro-angiogenic capacity for 24. h. The pro-angiogenic effect was cancelled by inhibition of VEGFR2 signalling. VEGF concentrations in CM tended to be elevated by mechanical stimulation; this was significant in haematomas from younger, but not from older patients. Other GFs were not mechanically regulated. In conclusion, the paracrine pro-angiogenic capacity of early human haematomas is enhanced by mechanical stimulation. This effect lasts even after removing the mechanical stimulus and appears to be VEGFR2-dependent.
Resumo:
Introduction Stretching of tissue stimulates angiogenesis but increased motion at a fracture site hinders revascularisation. In vitro studies have indicated that mechanical stimuli promote angiogenic responses in endothelial cells, but can either inhibit or enhance responses when applied directly to angiogenesis assays. We anticipated that cyclic tension applied during endothelial network assembly would increase vascular structure formation up to a certain threshold. Methods Fibroblast/HUVEC co-cultures were subjected to cyclic equibiaxial strain (1 Hz; 6 h/day; 7 days) using the FlexerCell FX-4000T system and limiting rings for simultaneous application of multiple strain magnitudes (0–13%). Cells were labelled using anti-PECAM-1, and image analysis provided measures of endothelial network length and numbers of junctions. Results Cyclic stretching had no significant effect on the total length of endothelial networks (P > 0.2) but resulted in a strain-dependent decrease in branching and localised alignments of endothelial structures, which were in turn aligned with the supporting fibroblastic construct. Conclusion The organisation of endothelial networks under cyclic strain is dominated by structural adaptation to the supporting construct. It may be that, in fracture healing, the formation and integrity of the granulation tissue and callus is ultimately critical in revascularisation and its failure under severe strain conditions.
Resumo:
A series of aza-boron-diquinomethene (aza-BODIQU) complexes with different aryl-substituents (B1–B6) were synthesized and characterized. Their photophysical properties were investigated systematically via spectroscopic and theoretical methods. All complexes exhibit strong 1π–π* absorption bands and intense fluorescent emission bands in the visible spectral region at room temperature. The fluorescence spectra in solution show the mirror image features of the S0→S1 absorption bands, which can be assigned to the 1π–π*/1ICT (intramolecular charge transfer) emitting states. Except for B6, all complexes exhibit high photoluminescence quantum yields (ΦPL = 0.47–0.93). The spectroscopic studies and theoretical calculations indicate that the photophysical properties of these aza-BODIQUs can be tuned by the appended aryl-substituents, which would be useful for rational design of boron–fluorine complexes with high emission quantum yield for organic light-emitting applications.
Resumo:
Dermal wound repair involves complex interactions between cells, cytokines and mechanics to close injuries to the skin. In particular, we investigate the contribution of fibroblasts, myofibroblasts, TGFβ, collagen and local tissue mechanics to wound repair in the human dermis. We develop a morphoelastic model where a realistic representation of tissue mechanics is key, and a fibrocontractive model that involves a reasonable approximation to the true kinetics of the important bioactive species. We use each of these descriptions to elucidate the mechanisms that generate pathologies such as hypertrophic scars, contractures and keloids. We find that for hypertrophic scar and contracture development, factors regulating the myofibroblast phenotype are critical, with heightened myofibroblast activation, reduced myofibroblast apoptosis or prolonged inflammation all predicted as mediators for scar hypertrophy and contractures. Prevention of these pathologies is predicted when myofibroblast apoptosis is induced, myofibroblast activation is blocked or TGFβ is neutralised. To investigate keloid invasion, we develop a caricature representation of the fibrocontractive model and find that TGFβ spread is the driving factor behind keloid growth. Blocking activation of TGFβ is found to cause keloid regression. Thus, we recommend myofibroblasts and TGFβ as targets for clinicians when developing intervention strategies for prevention and cure of fibrotic scars.
Resumo:
Food waste is a current challenge that both developing and developed countries face. This project applied a novel combination of available methods in Mechanical, agricultural and food engineering to address these challenges. A systematic approach was devised to investigate possibilities of reducing food waste and increasing the efficiency of industry by applying engineering concepts and theories including experimental, mathematical and computational modelling methods. This study highlights the impact of comprehensive understanding of agricultural and food material response to the mechanical operations and its direct relation to the volume of food wasted globally.
Resumo:
In this paper we modeled a quantum dot at near proximity to a gap plasmon waveguide to study the quantum dot-plasmon interactions. Assuming that the waveguide is single mode, this paper is concerned about the dependence of spontaneous emission rate of the quantum dot on waveguide dimensions such as width and height. We compare coupling efficiency of a gap waveguide with symmetric configuration and asymmetric configuration illustrating that symmetric waveguide has a better coupling efficiency to the quantum dot. We also demonstrate that optimally placed quantum dot near a symmetric waveguide with 50 nm x 50 nm cross section can capture 80% of the spontaneous emission into a guided plasmon mode.
Resumo:
This work is motivated by the need to efficiently machine the edges of ophthalmic polymer lenses for mounting in spectacle or instrument frames. The polymer materials used are required to have suitable optical characteristics such high refractive index and Abbe number, combined with low density and high scratch and impact resistance. Edge surface finish is an important aesthetic consideration; its quality is governed by the material removal operation and the physical properties of the material being processed. The wear behaviour of polymer materials is not as straightforward as for other materials due to their molecular and structural complexity, not to mention their time-dependent properties. Four commercial ophthalmic polymers have been studied in this work using nanoindentation techniques which are evaluated as tools for probing surface mechanical properties in order to better understand the grinding response of polymer materials.
Resumo:
This study used automated data processing techniques to calculate a set of novel treatment plan accuracy metrics, and investigate their usefulness as predictors of quality assurance (QA) success and failure. 151 beams from 23 prostate and cranial IMRT treatment plans were used in this study. These plans had been evaluated before treatment using measurements with a diode array system. The TADA software suite was adapted to allow automatic batch calculation of several proposed plan accuracy metrics, including mean field area, small-aperture, off-axis and closed-leaf factors. All of these results were compared the gamma pass rates from the QA measurements and correlations were investigated. The mean field area factor provided a threshold field size (5 cm2, equivalent to a 2.2 x 2.2 cm2 square field), below which all beams failed the QA tests. The small aperture score provided a useful predictor of plan failure, when averaged over all beams, despite being weakly correlated with gamma pass rates for individual beams. By contrast, the closed leaf and off-axis factors provided information about the geometric arrangement of the beam segments but were not useful for distinguishing between plans that passed and failed QA. This study has provided some simple tests for plan accuracy, which may help minimise time spent on QA assessments of treatments that are unlikely to pass.
Resumo:
We propose to use a simple and effective way to achieve secure quantum direct secret sharing. The proposed scheme uses the properties of fountain codes to allow a realization of the physical conditions necessary for the implementation of no-cloning principle for eavesdropping-check and authentication. In our scheme, to achieve a variety of security purposes, nonorthogonal state particles are inserted in the transmitted sequence carrying the secret shares to disorder it. However, the positions of the inserted nonorthogonal state particles are not announced directly, but are obtained by sending degrees and positions of a sequence that are pre-shared between Alice and each Bob. Moreover, they can confirm that whether there exists an eavesdropper without exchanging classical messages. Most importantly, without knowing the positions of the inserted nonorthogonal state particles and the sequence constituted by the first particles from every EPR pair, the proposed scheme is shown to be secure.
Resumo:
A known limitation of the Probability Ranking Principle (PRP) is that it does not cater for dependence between documents. Recently, the Quantum Probability Ranking Principle (QPRP) has been proposed, which implicitly captures dependencies between documents through “quantum interference”. This paper explores whether this new ranking principle leads to improved performance for subtopic retrieval, where novelty and diversity is required. In a thorough empirical investigation, models based on the PRP, as well as other recently proposed ranking strategies for subtopic retrieval (i.e. Maximal Marginal Relevance (MMR) and Portfolio Theory(PT)), are compared against the QPRP. On the given task, it is shown that the QPRP outperforms these other ranking strategies. And unlike MMR and PT, one of the main advantages of the QPRP is that no parameter estimation/tuning is required; making the QPRP both simple and effective. This research demonstrates that the application of quantum theory to problems within information retrieval can lead to significant improvements.
Resumo:
In this paper we introduce a formalization of Logical Imaging applied to IR in terms of Quantum Theory through the use of an analogy between states of a quantum system and terms in text documents. Our formalization relies upon the Schrodinger Picture, creating an analogy between the dynamics of a physical system and the kinematics of probabilities generated by Logical Imaging. By using Quantum Theory, it is possible to model more precisely contextual information in a seamless and principled fashion within the Logical Imaging process. While further work is needed to empirically validate this, the foundations for doing so are provided.
Resumo:
Social tagging systems are shown to evidence a well known cognitive heuristic, the guppy effect, which arises from the combination of different concepts. We present some empirical evidence of this effect, drawn from a popular social tagging Web service. The guppy effect is then described using a quantum inspired formalism that has been already successfully applied to model conjunction fallacy and probability judgement errors. Key to the formalism is the concept of interference, which is able to capture and quantify the strength of the guppy effect.