911 resultados para Quantitative Easing
Resumo:
A new approach for studying photorefractive gratings in two-wave mixing experiments by a phase modulation technique is presented. The introduction of a large-amplitude, high-frequency sinusoidal phase modulation in one of the input beams blurs the interference pattern and provides powerful harmonic signals for accurate measurements of the grating diffraction efficiency eta and the output phase shift rho between the transmitted and diffracted waves. The blurring of the light fringes can be used to suppress the higher spatial harmonics of the grating, allowing a space-charge field with sinusoidal profile to be recorded. Although the presence of such a strong phase modulation affects the beam coupling in a rather complicated way, it is shown that for the special case of equal intensity input beams, the effect of the phase modulation on eta and rho is reduced to a weakening of the coupling strength. The potentialities of the technique are illustrated in a study of refractive-index waves excited by running interference patterns in a Bi12TiO20 crystal. Expressions for the diffraction efficiency and the output phase shift are derived and used to match numerically calculated curves to the experimental data. The theoretical model is supported by the very good data fitting and allows the computation of important material parameters.
Resumo:
This study evaluates laboratory microtomography and microhardness analysis for quantifying the mineral content of bovine enamel. Fifty enamel blocks were submitted individually for 5 days to a pH-cycling model at 37 degrees C and remained in the remineralizing solution for 2 days. The blocks were treated twice daily for 1 min with NaF dentifrices (Placebo, 275, 550, 1,100 mu g F/g and Crest (R)) diluted in deionized water. Surface microhardness changes (%SMH) and mineral loss (Delta Z) were then calculated. Laboratory microtomography was also used to measure total mineral lost (LMM). Pearson's correlation (p < 0.05) was used to determine the relationship between different methods of analysis and dose-response between treatments. Dentifrice fluoride concentration and %SMH and Delta Z were correlated (p < 0.05). There was a positive relationship (p < 0.05) when comparing LMM vs. Delta Z; a negative relationship (p < 0.05) was found for %SMH vs. LMM and %SMH vs. Delta Z. Therefore, both mineral quantification techniques provide adequate precision for studying the bovine enamel-pH-cycling demineralization/remineralization model.
Resumo:
The purpose of this study was to evaluate the relationship between Candida and denture wear during the night. Twenty-four edentulous volunteers were randomly divided into two groups. Group I (GI, n = 11) was composed of volunteers who wore their complete dentures day and night and Group H (GII, n = 13) was composed of volunteers who wore their complete dentures only during the day. Three examination periods were performed for both groups. In GI, the first examination (A) was carried out after overnight denture wearing. Subsequent examinations were conducted after one (B) and seven nights (C) without denture use during sleep. In GII, the first (A) was done without previous use during sleep, and the following were carried out after one (B) and seven nights (C) of overnight denture wearing. Total un-stimulated saliva was collected in a sterile container and cultured in duplicate inside Petri dishes. The values of colony forming units (CFU mL(-1) +/- s.d.) were obtained: GI A - 10.1 x 10(3) +/- 1.2 x 10(4), B - 2.0 x 10(3) +/- 2.6 x 10(3), and C - 2.6 x 10(3) +/- 5.9 x 10(3) and GII: A - 0.4 x 10(3) +/- 0.6 x 10(3), B - 9.4 x 10(3) +/- 17.7 x 10(3) and C - 6.3 x 10(3) +/- 15.3 x 10(3). The mean counts for Candida sp. were expressed as log (CFU + 1) mL(-1) and statistical significance of differences among groups was tested by ANOVA (alpha = 0.05). Multiple comparisons were performed according to Bonferroni test and indicated significant differences between A-B and A-C, but not between B and C for both groups. It was concluded that there is a significant relationship between continuous denture wear and Candida sp.
Resumo:
The aim of this study was to evaluate the number and the diameter of dentin tubules in root canals, in the cervical, middle, and apical thirds, of human and bovine teeth. Twenty-four single-rooted, human premolars were divided into four groups (n = 6): GH1, 10 to 15 years; GH2, 16 to 30 years; GH3, 31 to 45 years; and GH4, 46 to 80 years; and 24 bovine incisors were divided into four groups (n = 6): GB1, central; GB2, lateral first; GB3, lateral second; and GB4, lateral third. The crowns were removed from the specimens, which were then debrided, sectioned longitudinally in the vestibular-lingual direction, and submitted to ultrasonic cleaning. Scanning electron microscopic evaluations were made with 1,000x and 5,000x magnification. According to the root thirds, statistically significant differences were found both for the number and the diameter of dentin tubules, with the cervical third presenting the highest mean values for both specimen types. As regards the number of dentin tubules, it was observed that the bovine specimens presented a significantly higher mean value than the human specimens; this difference was not observed when the diameters of the two types were compared.
Resumo:
A quantitative phase analysis was made of LiXCoO2 powders obtained by two distinct chemical methodologies at different temperatures (from 400 to 700degreesC). A phase analysis was made using Rietveld refinements based on X-ray diffraction data, considering the LiXCoO2 powders as a multiphase system that simultaneously contained two main phases with distinct, layered and spinel-type structures. The sults showed the coexistence of both structures in LiXCoO2 obtained at low temperature (400 and 500degreesC), although only the layered structure was detected at higher temperatures (600 and 700degreesC, regardless of the chemical powder process employed. The electrochemical performance, evaluated mainly by the cycling reversibility of LiXCoO2 in the form of cathode insertion electrodes, revealed that there is a close correlation between structural features and the electrochemical response, with one of the redox processes (3.3 v/3.9 v) associated only with the presence of the spinel-type structure. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Background: Calcaneal apophysitis in children is a self-limited condition that may interfere with walking and physical performance in sports, thus causing concern to the patient and parents. There is still controversy about the significance of the radiographic changes in children with heel pain, since the report of Sever in 1912. One of the reasons is that normal children may display a considerable variation in the radiographic aspects of the secondary ossification center of the calcaneus at different ages. Methods: In this investigation, the developmental aspects of primary and secondary ossification centers of the calcaneus were studied in radiographs obtained from healthy boys and from boys with calcaneal apophysitis. The normal population comprised 392 children and adolescents ranging in age from 6 to 15 years. There were 69 individuals with calcaneal apophysitis ranging in age from 8 to 14 years. Lateral standard radiographs were obtained of both heels, and a copper step wedge was used as a calibration to determine bone density. The following parameters were analyzed on the plain films: time of appearance, fusion and number of fragments of the secondary nucleus, area and bone densitometry of the primary and secondary ossification centers of the calcaneus. Results: In the normal population, the ossification of the secondary nucleus began at 7 years of age, and at 15 years of age, the nucleus was fused in all individuals. In the apophysitis group, the secondary ossification center was present and not fused in all individuals. Both secondary nuclei increased in size with age with no difference between the two groups. Regarding bone density, both the primary and secondary nuclei were less dense in the apophysitis group than their counterparts in the normal population. The most significant difference between the two populations referred to the degree of fragmentation, which was greater in the apophysitis group. Conclusion: Our data showed that the sclerotic aspect of the secondary nucleus of the calcaneus is a normal feature and, therefore, should not be used to establish the diagnosis of Sever's disease. The most consistent difference between the normal and apophysitis group was related to the more fragmented aspect of the secondary nucleus in the latter individuals, which may suggest a mechanical etiology for that condition.
Resumo:
Five different morphological types of Maytenus ilicifolia of the same age and harvested under the same conditions showed distinct accumulations of some friedo-nor-oleananes. A rapid, sensitive and reliable reverse-phase HPLC method (employing an external standard) was used for the determination of the cytotoxic triterpenoids, 20alpha-hydroxymaytenin, 22beta-hydroxymaytenin, maytenin, celastrol and pristimerin in each of the five types. Well resolved peaks with good detection response and linearity in the range 1.0-100 mug/mL were obtained. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
Dielectric thermal analysis has been proved as a valuable tool for monitoring the epoxy curing process and the related rheological properties in the fabrication of polymer-matrix composite materials. This technique also has the potential to be applied in the monitoring of magnet impregnation processes as well as in quality control. In this work we present the quantitative evaluation of the viscosity changing and the curing kinetics for a commercial Stycast epoxy resin system at different temperatures through the impedance analysis. The results showed correlation between the real component of the complex impedance and the isothermal reaction extent. Comparing the dielectric analysis result with the viscosity measured by rotational rheometer we observed a similar behavior reported for dynamic mechanic analysis. The results comparison have shown that the kinetics parameters obtained from DSC and DETA analysis showed different sensitivities related to the characteristics of curing stages. We concluded that the dielectric thermal analysis should be applied in quantitative evaluation of cure kinetics.
Resumo:
Quantitative estimates of time-averaging in marine shell accumulations available to date are limited primarily to aragonitic mollusk shells. We assessed time-averaging in Holocene assemblages of calcitic brachiopod shells by direct dating of individual specimens of the terebratulid brachiopod Bouchardia rosea. The data were collected from exceptional (brachiopod-rich) shell assemblages, occurring surficially on a tropical mixed carbonate-siliciclastic shelf (the Southeast Brazilian Bight, SW Atlantic), a setting that provides a good climatic and environmental analog for many Paleozoic brachiopod shell beds of North America and Europe. A total of 82 individual brachiopod shells, collected from four shallow (5-25 m) nearshore (<2.5 km from the shore) localities, were dated by using amino acid racemization (D-alloisoleucine/L-isoleucine value) calibrated with five AMS-radiocarbon dates (r(2) = 0.933). This is the first study to demonstrate that amino acid racemization methods can provide accurate and precise ages for individual shells of calcitic brachiopods.The dated shells vary in age from modern to 3000 years, with a standard deviation of 690 years. The age distribution is strongly right-skewed: the young shells dominate the dated specimens and older shells are increasingly less common. However, the four localities display significant differences in the range of time-averaging and the form of the age distribution. The dated shells vary notably in the quality of preservation, but there is no significant correlation between taphonomic condition and age, either for individual shells or at assemblage level.These results demonstrate that fossil brachiopods may show considerable time-averaging, but the scale and nature of that mixing may vary greatly among sites. Moreover, taphonomic condition is not a reliable indicator of pre-burial history of individual brachiopod shells or the scale of temporal mixing within the entire assemblage. The results obtained for brachiopods are strikingly similar to results previously documented for mollusks and suggest that differences in mineralogy and shell microstructure are unlikely to be the primary factors controlling the nature and scale of time-averaging. Environmental factors and local fluctuations in populations of shell-producing organisms are more likely to be the principal determinants of time-averaging in marine benthic shelly assemblages. The long-term survival of brachiopod shells is incongruent with the rapid shell destruction observed in taphonomic experiments. The results support the taphonomic model that shells remain protected below (but perhaps near) the surface through their early taphonomic history. They may be brought back up to the surface intermittently by bioturbation and physical reworking, but only for short periods of time. This model explains the striking similarities in time-averaging among different types of organisms and the lack of correlation between time-since-death and shell taphonomy.
Resumo:
Spin tunneling in the particular case of the magnetic molecular cluster octanuclear iron(III), Fe8, is treated by an effective Hamiltonian that allows for an angle-based description of the process. The presence of an external magnetic field along the easy axis is also taken into account in this description. Analytic expressions for the energy levels and barriers are obtained from a harmonic approximation of the potential function which give results in good agreement with the experimental results. The energy splittings due to spin tunneling is treated in an adapted WKB approach and it is shown that the present description can give results to a reliable degree of accuracy. (c) 2007 Elsevier B.V. All rights reserved.