849 resultados para Public Library of Fort Wayne and Allen County
Resumo:
Background: Adjuvants enhance or modify an immune response that is made to an antigen. An antagonist of the chemokine CCR4 receptor can display adjuvant-like properties by diminishing the ability of CD4+CD25+ regulatory T cells (Tregs) to down-regulate immune responses. Methodology: Here, we have used protein modelling to create a plausible chemokine receptor model with the aim of using virtual screening to identify potential small molecule chemokine antagonists. A combination of homology modelling and molecular docking was used to create a model of the CCR4 receptor in order to investigate potential lead compounds that display antagonistic properties. Three-dimensional structure-based virtual screening of the CCR4 receptor identified 116 small molecules that were calculated to have a high affinity for the receptor; these were tested experimentally for CCR4 antagonism. Fifteen of these small molecules were shown to inhibit specifically CCR4-mediated cellmigration, including that of CCR4(+) Tregs. Significance: Our CCR4 antagonists act as adjuvants augmenting human T cell proliferation in an in vitro immune response model and compound SP50 increases T cell and antibody responses in vivo when combined with vaccine antigens of Mycobacterium tuberculosis and Plasmodium yoelii in mice.
Resumo:
Background: Targeting the biosynthetic pathway of Coenzyme A (CoA) for drug development will compromise multiple cellular functions of the tubercular pathogen simultaneously. Structural divergence in the organization of the penultimate and final enzymes of CoA biosynthesis in the host and pathogen and the differences in their regulation mark out the final enzyme, dephosphocoenzyme A kinase (CoaE) as a potential drug target. Methodology/Principal Findings: We report here a complete biochemical and biophysical characterization of the M. tuberculosis CoaE, an enzyme essential for the pathogen's survival, elucidating for the first time the interactions of a dephosphocoenzyme A kinase with its substrates, dephosphocoenzyme A and ATP; its product, CoA and an intrinsic yet novel inhibitor, CTP, which helps modulate the enzyme's kinetic capabilities providing interesting insights into the regulation of CoaE activity. We show that the mycobacterial enzyme is almost 21 times more catalytically proficient than its counterparts in other prokaryotes. ITC measurements illustrate that the enzyme follows an ordered mechanism of substrate addition with DCoA as the leading substrate and ATP following in tow. Kinetic and ITC experiments demonstrate that though CTP binds strongly to the enzyme, it is unable to participate in DCoA phosphorylation. We report that CTP actually inhibits the enzyme by decreasing its Vmax. Not surprisingly, a structural homology search for the modeled mycobacterial CoaE picks up cytidylmonophosphate kinases, deoxycytidine kinases, and cytidylate kinases as close homologs. Docking of DCoA and CTP to CoaE shows that both ligands bind at the same site, their interactions being stabilized by 26 and 28 hydrogen bonds respectively. We have also assigned a role for the universal Unknown Protein Family 0157 (UPF0157) domain in the mycobacterial CoaE in the proper folding of the full length enzyme. Conclusions/Significance: In view of the evidence presented, it is imperative to assign a greater role to the last enzyme of Coenzyme A biosynthesis in metabolite flow regulation through this critical biosynthetic pathway.
Resumo:
Objective To determine trends in the incidence of foot-related hospitalisation and amputation amongst persons with diabetes in Queensland (Australia) between 2005 and 2010 that coincided with changes in state-wide ambulatory diabetic foot-related complication management. Methods All data from cases admitted for the principal reason of diabetes foot-related hospitalisation or amputation in Queensland from 2005–2010 were obtained from the Queensland Hospital Admitted Patient Data Collection dataset. Incidence rates for foot-related hospitalisation (admissions, bed days used) and amputation (total, minor, major) cases amongst persons with diabetes were calculated per 1,000 person-years with diabetes (diabetes population) and per 100,000 person-years (general population). Age-sex standardised incidence and age-sex adjusted Poisson regression models were also calculated for the general population. Results There were 4,443 amputations, 24,917 hospital admissions and 260,085 bed days used for diabetes foot-related complications in Queensland. Incidence per 1,000 person-years with diabetes decreased from 2005 to 2010: 43.0% for hospital admissions (36.6 to 20.9), 40.1% bed days (391 to 234), 40.0% total amputations (6.47 to 3.88), 45.0% major amputations (2.18 to 1.20), 37.5% minor amputations (4.29 to 2.68) (p < 0.01 respectively). Age-sex standardised incidence per 100,000 person-years in the general population also decreased from 2005 to 2010: 23.3% hospital admissions (105.1 to 80.6), 19.5% bed days (1,122 to 903), 19.3% total amputations (18.57 to 14.99), 26.4% major amputations (6.26 to 4.61), 15.7% minor amputations (12.32 to 10.38) (p < 0.01 respectively). The age-sex adjusted incidence rates per calendar year decreased in the general population (rate ratio (95% CI)); hospital admissions 0.949 (0.942–0.956), bed days 0.964 (0.962–0.966), total amputations 0.962 (0.946–0.979), major amputations 0.945 (0.917–0.974), minor amputations 0.970 (0.950–0.991) (p < 0.05 respectively). Conclusions There were significant reductions in the incidence of foot-related hospitalisation and amputation amongst persons with diabetes in the population of Queensland over a recent six-year period.
Resumo:
The aim of this paper is to provide a Bayesian formulation of the so-called magnitude-based inference approach to quantifying and interpreting effects, and in a case study example provide accurate probabilistic statements that correspond to the intended magnitude-based inferences. The model is described in the context of a published small-scale athlete study which employed a magnitude-based inference approach to compare the effect of two altitude training regimens (live high-train low (LHTL), and intermittent hypoxic exposure (IHE)) on running performance and blood measurements of elite triathletes. The posterior distributions, and corresponding point and interval estimates, for the parameters and associated effects and comparisons of interest, were estimated using Markov chain Monte Carlo simulations. The Bayesian analysis was shown to provide more direct probabilistic comparisons of treatments and able to identify small effects of interest. The approach avoided asymptotic assumptions and overcame issues such as multiple testing. Bayesian analysis of unscaled effects showed a probability of 0.96 that LHTL yields a substantially greater increase in hemoglobin mass than IHE, a 0.93 probability of a substantially greater improvement in running economy and a greater than 0.96 probability that both IHE and LHTL yield a substantially greater improvement in maximum blood lactate concentration compared to a Placebo. The conclusions are consistent with those obtained using a ‘magnitude-based inference’ approach that has been promoted in the field. The paper demonstrates that a fully Bayesian analysis is a simple and effective way of analysing small effects, providing a rich set of results that are straightforward to interpret in terms of probabilistic statements.
Resumo:
This paper offers a mediation on disaster, recovery, resilience, and restoration of balance, in both a material and a metaphorical sense, when ‘disaster’ befalls not the body politic of the nation but the body personal. In the past few decades, of course, artists, activists and scholars have deliberately tried to avoid describing personal, physical and phenomenological experiences of the disabled body in terms of difficulty and disaster. This has been part of a political move, from a medical model, in which disability, disease and illness are positioned as personal catastrophes, to a social model, in which disability is positioned as a social construct that comes from systems, institutions and infrastructure designed to exclude different bodies. It is a move that is responsible for a certain discomfort people with disabilities, and artists with disabilities, today feel towards performances that deploy disability as a metaphor for disaster, from Hijikata, to Theatre Hora. In the past five years, though, this particular discourse has begun rising again, particularly as people with disabilities fact their own anything but natural disasters as a result of the austerity measures now widespread across the US, UK, Europe and elsewhere. Measures that threaten people’s ability to live, and take part in social and institutional life, in any meaningful way. Measures that, as artist Katherine Araniello notes, also bring additional difficulty, danger, and potential for disaster as they ripple outwards across the tides of familial ties, threatening family, friends, and careers who become bound up in the struggle to do more with less. In this paper, I consider how people with disabilities use performance, particularly public space interventionalist performance, to reengage, renact and reenvisage the discourse of national, economic, environmental or other forms of disaster, the need for austerity, the need to avoid providing people with support for desires and interests as well as basic daily needs, particularly when fraud and corruption is so right, and other such ideas that have become an all too unpleasant reality for many people. Performances, for instance, like Liz Crow’s Bedding Out, where she invited people into her bed – for people with disabilities a symbolic space, which necessarily becomes more a public living room restaurant, office and so forth than a private space when poor mobility means they spend much time it in – to talk about their lives, their difficulties, and dealing with austerity. Or, for instance, like the Bolshy Divas, who mimic public and political policy, reports and advertising paranoia to undermine their discourses about austerity. I examine the effects, politics and ethics of such interventions, including examination of the comparative effect of highly bodied interventions (like Crow’s) and highly disembodied interventions (like the Bolshy Diva’s) in discourses of difficulty, disaster and austerity on a range of target spectator communities.
Resumo:
This paper provides a framework for understanding Twitter as a historical source. We address digital humanities scholars to enable the transfer of concepts from traditional source criticism to new media formats, and to encourage the preservation of Twitter as a cultural artifact. Twitter has established itself as a key social media platform which plays an important role in public, real-time conversation. Twitter is also unique as its content is being archived by a public institution (the Library of Congress). In this paper we will show that we still have to assume that much of the contextual information beyond the pure tweet texts is already lost, and propose additional objectives for preservation.
Resumo:
Muscoidea is a significant dipteran clade that includes house flies (Family Muscidae), latrine flies (F. Fannidae), dung flies (F. Scathophagidae) and root maggot flies (F. Anthomyiidae). It is comprised of approximately 7000 described species. The monophyly of the Muscoidea and the precise relationships of muscoids to the closest superfamily the Oestroidea (blow flies, flesh flies etc) are both unresolved. Until now mitochondrial (mt) genomes were available for only two of the four muscoid families precluding a thorough test of phylogenetic relationships using this data source. Here we present the first two mt genomes for the families Fanniidae (Euryomma sp.) (family Fanniidae) and Anthomyiidae (Delia platura (Meigen, 1826)). We also conducted phylogenetic analyses containing of these newly sequenced mt genomes plus 15 other species representative of dipteran diversity to address the internal relationship of Muscoidea and its systematic position. Both maximum-likelihood and Bayesian analyses suggested that Muscoidea was not a monophyletic group with the relationship: (Fanniidae + Muscidae) + ((Anthomyiidae + Scathophagidae) + (Calliphoridae + Sarcophagidae)), supported by the majority of analysed datasets. This also infers that Oestroidea was paraphyletic in the majority of analyses. Divergence time estimation suggested that the earliest split within the Calyptratae, separating (Tachinidae + Oestridae) from the remaining families, occurred in the Early Eocene. The main divergence within the paraphyletic muscoidea grade was between Fanniidae + Muscidae and the lineage ((Anthomyiidae + Scathophagidae) + (Calliphoridae + Sarcophagidae)) which occurred in the Late Eocene
Resumo:
Ten new cyclic hexadepsipeptides, six isariins and four isaridins, from the fungus Isaria have been identified and characterized by high-performance liquid chromatography, coupled to tandem electrospray ionization mass spectrometry (LC-ESIMS/MS). The isariins possess a beta-hydroxy acid residue and five alpha-amino acids, while isaridins contain a beta-amino acid, an alpha-hydroxy acid, and four alpha-amino acids. One- and two-dimensional NMR spectroscopy confirmed the chemical identity of some of the isariin fractions. Mass spectral fragmentation patterns of [M + H](+) ions reveal clear diagnostic fragment ions for the isariins and isaridins. Previously described cyclic depsipeptides, isarfelins from Isaria felina (Guo, Y. X.; Liu, Q. H.; Ng, T. B.; Wang H. X. Peptides 2005, 26, 2384), are now reassigned as members of the isaridin family. Examination of isaridin sequences revealed significant similarities with cyclic hexadepsipeptides such as destruxins and roseotoxins. The structure of an isariin (isariin A) investigated by NMR spectroscopy indicated the presence of a hybrid alpha beta C-11 turn, formed by the beta-hydroxy acid and glycine residues and a (D)Leu-(L)Ala type II' beta-turn. Additionally, the inhibitory effect of isariins and an isaridin on the intra-erythrocytic growth of Plasmodium falciparum is presented.
Resumo:
Background: Stabilization strategies adopted by proteins under extreme conditions are very complex and involve various kinds of interactions. Recent studies have shown that a large proportion of proteins have their N- and C-terminal elements in close contact and suggested they play a role in protein folding and stability. However, the biological significance of this contact remains elusive. Methodology: In the present study, we investigate the role of N- and C-terminal residue interaction using a family 10 xylanase (BSX) with a TIM-barrel structure that shows stability under high temperature,alkali pH, and protease and SDS treatment. Based on crystal structure,an aromatic cluster was identified that involves Phe4, Trp6 and Tyr343 holding the Nand C-terminus together; this is a unique and important feature of this protein that might be crucial for folding and stabilityunder poly-extreme conditions. Conclusion: A series of mutants was created to disrupt this aromatic cluster formation and study the loss of stability and function under given conditions. While the deletions of Phe4 resulted in loss of stability, removal of Trp6 and Tyr343 affected in vivo folding and activity. Alanine substitution with Phe4, Trp6 and Tyr343 drastically decreased stability under all parameters studied. Importantly,substitution of Phe4 with Trp increased stability in SDS treatment.Mass spectrometry results of limited proteolysis further demonstrated that the Arg344 residue is highly susceptible to trypsin digestion in sensitive mutants such as DF4, W6A and Y343A, suggesting again that disruption of the Phe4-Trp6-Tyr343 (F-W-Y) cluster destabilizes the N-and C-terminal interaction. Our results underscore the importance of N- and C-terminal contact through aromatic interactions in protein folding and stability under extreme conditions, and these results may be useful to improve the stability of other proteins under suboptimal conditions.
Resumo:
Ten new cyclic hexadepsipeptides, six isariins and four isaridins, from the fungus Isaria have been identified and characterized by high-performance liquid chromatography, coupled to tandem electrospray ionization mass spectrometry (LC-ESIMS/MS). The isariins possess a beta-hydroxy acid residue and five alpha-amino acids, while isaridins contain a beta-amino acid, an alpha-hydroxy acid, and four alpha-amino acids. One- and two-dimensional NMR spectroscopy confirmed the chemical identity of some of the isariin fractions. Mass spectral fragmentation patterns of [M + H](+) ions reveal clear diagnostic fragment ions for the isariins and isaridins. Previously described cyclic depsipeptides, isarfelins from Isaria felina (Guo, Y. X.; Liu, Q. H.; Ng, T. B.; Wang H. X. Peptides 2005, 26, 2384), are now reassigned as members of the isaridin family. Examination of isaridin sequences revealed significant similarities with cyclic hexadepsipeptides such as destruxins and roseotoxins. The structure of an isariin (isariin A) investigated by NMR spectroscopy indicated the presence of a hybrid alpha beta C-11 turn, formed by the beta-hydroxy acid and glycine residues and a (D)Leu-(L)Ala type II' beta-turn. Additionally, the inhibitory effect of isariins and an isaridin on the intra-erythrocytic growth of Plasmodium falciparum is presented.
Resumo:
Synthetic CpG containing oligodeoxynucleotide Toll like receptor-9 agonist (CpG DNA) activates innate immunity and can stimulate antigen presentation against numerous intracellular pathogens. It was observed that Salmonella Typhimurium growth can be inhibited by the CpG DNA treatment in the murine dendritic cells. This inhibitory effect was mediated by an increased reactive oxygen species production. In addition, it was noted that CpG DNA treatment of dendritic cells during Salmonella infection leads to an increased antigen presentation. Further this increased antigen presentation was dependent on the enhanced reactive oxygen species production elicited by Toll like receptor-9 activation. With the help of an exogenous antigen it was shown that Salmonella antigen could also be cross-presented in a better way by CpG induction. These data collectively indicate that CpG DNA enhance the ability of murine dendritic cells to contain the growth of virulent Salmonella through reactive oxygen species dependent killing.
Resumo:
Background. Several types of networks, such as transcriptional, metabolic or protein-protein interaction networks of various organisms have been constructed, that have provided a variety of insights into metabolism and regulation. Here, we seek to exploit the reaction-based networks of three organisms for comparative genomics. We use concepts from spectral graph theory to systematically determine how differences in basic metabolism of organisms are reflected at the systems level and in the overall topological structures of their metabolic networks. Methodology/Principal Findings. Metabolome-based reaction networks of Mycobacterium tuberculosis, Mycobacterium leprae and Escherichia coli have been constructed based on the KEGG LIGAND database, followed by graph spectral analysis of the network to identify hubs as well as the sub-clustering of reactions. The shortest and alternate paths in the reaction networks have also been examined. Sub-cluster profiling demonstrates that reactions of the mycolic acid pathway in mycobacteria form a tightly connected sub-cluster. Identification of hubs reveals reactions involving glutamate to be central to mycobacterial metabolism, and pyruvate to be at the centre of the E. coli metabolome. The analysis of shortest paths between reactions has revealed several paths that are shorter than well established pathways. Conclusions. We conclude that severe downsizing of the leprae genome has not significantly altered the global structure of its reaction network but has reduced the total number of alternate paths between its reactions while keeping the shortest paths between them intact. The hubs in the mycobacterial networks that are absent in the human metabolome can be explored as potential drug targets. This work demonstrates the usefulness of constructing metabolome based networks of organisms and the feasibility of their analyses through graph spectral methods. The insights obtained from such studies provide a broad overview of the similarities and differences between organisms, taking comparative genomics studies to a higher dimension.