890 resultados para Proxy
Resumo:
Lake sediment records from the Weerterbos region, in the southern Netherlands, were studied to reconstruct summer temperature and environmental changes during the Weichselian Lateglacial Interstadial. A sediment core obtained from a small lacustrine basin was analysed for multiple proxies, including lithological changes, oxygen isotopes of bulk carbonates, pollen and chironomids. It was found that the oxygen isotope record differed strongly from the other proxies. Based on a comparison with three additional lake sediment records from the same region, it emerged that the oxygen isotope records were strongly affected by local environmental conditions, impeding the distinction of a regional palaeoclimate signal. The chironomid-inferred July air temperature reconstruction produced inferred interstadial temperatures ranging between ∼15° and 18°C, largely consistent with previously published results from the northern part of the Netherlands. A temporary regressive phase in the pollen record, which can be tentatively correlated with the Older Dryas, preceded the expansion of birch woodland. Despite differences between the four pollen records from the Weerterbos region, a comparable regressive vegetation phase that was possibly the result of a shift to drier conditions could be discerned in all of the profiles. In addition, a temporary temperature decline of ∼1.5°C was inferred from the chironomid record during this regressive phase. The multi-proxy approach used here enabled a direct comparison of inferred changes in temperature, vegetation and environmental conditions at an individual site, while the multi-site approach provided insight into the factors influencing the pollen and isotope records from these small-scale depressions.
Resumo:
On the basis of a multi-proxy approach and a strategy combining lacustrine and marine records along a north–south transect, data collected in the central Mediterranean within the framework of a collaborative project have led to reconstruction of high-resolution and well-dated palaeohydrological records and to assessment of their spatial and temporal coherency. Contrasting patterns of palaeohydrological changes have been evidenced in the central Mediterranean: south (north) of around 40° N of latitude, the middle part of the Holocene was characterised by lake-level maxima (minima), during an interval dated to ca. 10 300–4500 cal BP to the south and 9000–4500 cal BP to the north. Available data suggest that these contrasting palaeohydrological patterns operated throughout the Holocene, both on millennial and centennial scales. Regarding precipitation seasonality, maximum humidity in the central Mediterranean during the middle part of the Holocene was characterised by humid winters and dry summers north of ca. 40° N, and humid winters and summers south of ca. 40° N. This may explain an apparent conflict between palaeoclimatic records depending on the proxies used for reconstruction as well as the synchronous expansion of tree species taxa with contrasting climatic requirements. In addition, south of ca. 40° N, the first millennium of the Holocene was characterised by very dry climatic conditions not only in the eastern, but also in the central- and the western Mediterranean zones as reflected by low lake levels and delayed reforestation. These results suggest that, in addition to the influence of the Nile discharge reinforced by the African monsoon, the deposition of Sapropel 1 has been favoured (1) by an increase in winter precipitation in the northern Mediterranean borderlands, and (2) by an increase in winter and summer precipitation in the southern Mediterranean area. The climate reversal following the Holocene climate optimum appears to have been punctuated by two major climate changes around 7500 and 4500 cal BP. In the central Mediterranean, the Holocene palaeohydrological changes developed in response to a combination of orbital, ice-sheet and solar forcing factors. The maximum humidity interval in the south-central Mediterranean started ca. 10 300 cal BP, in correlation with the decline (1) of the possible blocking effects of the North Atlantic anticyclone linked to maximum insolation, and/or (2) of the influence of the remnant ice sheets and fresh water forcing in the North Atlantic Ocean. In the north-central Mediterranean, the lake-level minimum interval began only around 9000 cal BP when the Fennoscandian ice sheet disappeared and a prevailing positive NAO-(North Atlantic Oscillation) type circulation developed in the North Atlantic area. The major palaeohydrological oscillation around 4500–4000 cal BP may be a non-linear response to the gradual decrease in insolation, with additional key seasonal and interhemispheric changes. On a centennial scale, the successive climatic events which punctuated the entire Holocene in the central Mediterranean coincided with cooling events associated with deglacial outbursts in the North Atlantic area and decreases in solar activity during the interval 11 700–7000 cal BP, and to a possible combination of NAO-type circulation and solar forcing since ca. 7000 cal BP onwards. Thus, regarding the centennial-scale climatic oscillations, the Mediterranean Basin appears to have been strongly linked to the North Atlantic area and affected by solar activity over the entire Holocene. In addition to model experiments, a better understanding of forcing factors and past atmospheric circulation patterns behind the Holocene palaeohydrological changes in the Mediterranean area will require further investigation to establish additional high-resolution and well-dated records in selected locations around the Mediterranean Basin and in adjacent regions. Special attention should be paid to greater precision in the reconstruction, on millennial and centennial timescales, of changes in the latitudinal location of the limit between the northern and southern palaeohydrological Mediterranean sectors, depending on (1) the intensity and/or characteristics of climatic periods/oscillations (e.g. Holocene thermal maximum versus Neoglacial, as well as, for instance, the 8.2 ka event versus the 4 ka event or the Little Ice Age); and (2) on varying geographical conditions from the western to the eastern Mediterranean areas (longitudinal gradients). Finally, on the basis of projects using strategically located study sites, there is a need to explore possible influences of other general atmospheric circulation patterns than NAO, such as the East Atlantic–West Russian or North Sea–Caspian patterns, in explaining the apparent complexity of palaeoclimatic (palaeohydrological) Holocene records from the Mediterranean area.
Resumo:
Climate, land use and fire are strong determinants of plant diversity, potentially resulting in local extinctions, including rare endemic and economically valuable species. While climate and land use are decisive for vegetation composition and thus the species pool, fire disturbance can lead to landscape fragmentation, affecting the provisioning of important ecosystem services such as timber and raw natural resources. We use multi-proxy palaeoecological data with high taxonomic and temporal resolution across an environmental gradient to assess the long-term impact of major climate shifts, land use and fire disturbance on past vegetation openness and plant diversity (evenness and richness). Evenness of taxa is inferred by calculating the probability of interspecific encounter (PIE) of pollen and spores and species richness by palynological richness (PRI). To account for evenness distortions of PRI, we developed a new palaeodiversity measure, which is evenness-detrended palynological richness (DE-PRI). Reconstructed species richness increases from north to south regardless of time, mirroring the biodiversity increase across the gradient from temperate deciduous to subtropical evergreen vegetation. Climatic changes after the end of the last ice age contributed to biodiversity dynamics, usually by promoting species richness and evenness in response to warming. The data reveal that the promotion of diverse open-land ecosystems increased when human disturbance became determinant, while forests became less diverse. Our results imply that the today’s biodiversity has been shaped by anthropogenic forcing over the millennia. Future management strategies aiming at a successful conservation of biodiversity should therefore consider the millennia-lasting role of anthropogenic fire and human activities.
Resumo:
Modern pollen samples provide an invaluable research tool for helping to interpret the quaternary fossil pollen record, allowing investigation of the relationship between pollen as the proxy and the environmental parameters such as vegetation, land-use, and climate that the pollen proxy represents. The European Modern Pollen Database (EMPD) is a new initiative within the European Pollen Database (EPD) to establish a publicly accessible repository of modern (surface sample) pollen data. This new database will complement the EPD, which at present holds only fossil sedimentary pollen data. The EMPD is freely available online to the scientific community and currently has information on almost 5,000 pollen samples from throughout the Euro-Siberian and Mediterranean regions, contributed by over 40 individuals and research groups. Here we describe how the EMPD was constructed, the various tables and their fields, problems and errors, quality controls, and continuing efforts to improve the available data.
Resumo:
The thermometer-based global surface temperature time series (GST) commands a prominent role in the evidence for global warming, yet this record has considerable uncertainty. An independent record with better geographic coverage would be valuable in understanding recent change in the context of natural variability. We compiled the Paleo Index (PI) from 173 temperature-sensitive proxy time series (corals, ice cores, speleothems, lake and ocean sediments, historical documents). Each series was normalized to produce index values of change relative to a 1901–2000 base period; the index values were then averaged. From 1880 to 1995, the index trends significantly upward, similar to the GST. Smaller-scale aspects of the GST including two warming trends and a warm interval during the 1940s are also observed in the PI. The PI extends to 1730 with 67 records. The upward trend appears to begin in the early 19th century but the year-to-year variability is large and the 1730–1929 trend is small.
Resumo:
In schizophrenia there is a consistent epidemiological finding of a birth excess in winter and spring. Season of birth is thought to act as a proxy indicator for harmful environmental factors during foetal maturation. There is evidence that prenatal exposure to harmful environmental factors may trigger pathologic processes in the neurodevelopment, which subsequently increase the risk of schizophrenia. Since brain white matter alterations have repeatedly been found in schizophrenia, the objective of this study was to investigate whether white matter integrity was related to the season of birth in patients with schizophrenia. Thirty-four patients with schizophrenia and 33 healthy controls underwent diffusion tensor imaging. Differences in the fractional anisotropy maps of schizophrenia patients and healthy controls born in different seasons were analysed with tract-based spatial statistics. A significant main effect of season of birth and an interaction of group and season of birth showed that patients born in summer had significantly lower fractional anisotropy in widespread white matter regions than those born in the remainder of the year. Additionally, later age of schizophrenia onset was found in patients born in winter months. The current findings indicate a relationship of season of birth and white matter alterations in schizophrenia and consequently support the neurodevelopmental hypothesis of early pathological mechanisms in schizophrenia.
Resumo:
High-resolution reconstructions of climate variability that cover the past millennia are necessary to improve the understanding of natural and anthropogenic climate change across the globe. Although numerous records are available for the mid- and high-latitudes of the Northern Hemisphere, global assessments are still compromised by the scarcity of data from the Southern Hemisphere. This is particularly the case for the tropical and subtropical areas. In addition, high elevation sites in the South American Andes may provide insight into the vertical structure of climate change in the mid-troposphere. This study presents a 3000 yr-long austral summer (November to February) temperature reconstruction derived from the 210Pb- and 14C-dated organic sediments of Laguna Chepical (32°16' S, 70°30' W, 3050 m a.s.l.), a high-elevation glacial lake in the subtropical Andes of central Chile. Scanning reflectance spectroscopy in the visible light range provided the spectral index R570/R630, which reflects the clay mineral content in lake sediments. For the calibration period (AD 1901–2006), the R570/R630 data were regressed against monthly meteorological reanalysis data, showing that this proxy was strongly and significantly correlated with mean summer (NDJF) temperatures (R3 yr = −0.63, padj = 0.01). This calibration model was used to make a quantitative temperature reconstruction back to 1000 BC. The reconstruction (with a model error RMSEPboot of 0.33 °C) shows that the warmest decades of the past 3000 yr occurred during the calibration period. The 19th century (end of the Little Ice Age (LIA)) was cool. The prominent warmth reconstructed for the 18th century, which was also observed in other records from this area, seems systematic for subtropical and southern South America but remains difficult to explain. Except for this warm period, the LIA was generally characterized by cool summers. Back to AD 1400, the results from this study compare remarkably well to low altitude records from the Chilean Central Valley and southern South America. However, the reconstruction from Laguna Chepical does not show a warm Medieval Climate Anomaly during the 12–13th century, which is consistent with records from tropical South America. The Chepical record also indicates substantial cooling prior to 800 BC. This coincides with well-known regional as well as global glacier advances which have been attributed to a grand solar minimum. This study thus provides insight into the climatic drivers and temperature patterns in a region for which currently very few data are available. It also shows that since ca. AD 1400, long-term temperature patterns were generally similar at low and high altitudes in central Chile.
Resumo:
This study presents a proxy-based, quantitative reconstruction of cold-season (mean October to May, TOct–May) air temperatures covering nearly the entire last millennium (AD 1060–2003, some hiatuses). The reconstruction was based on subfossil chrysophyte stomatocyst remains in the varved sediments of high-Alpine Lake Silvaplana, eastern Swiss Alps (46°27’N, 9°48′W, 1791 m a.s.l.). Previous studies have demonstrated the reliability of this proxy by comparison to meteorological data. Cold-season air temperatures could therefore be reconstructed quantitatively, at a high resolution (5-yr) and with high chronological accuracy. Spatial correlation analysis suggests that the reconstruction reflects cold season climate variability over the high- Alpine region and substantial parts of central and western Europe. Cold-season temperatures were characterized by a relatively stable first part of the millennium until AD 1440 (2σ of 5-yr mean values = 0.7 °C) and highly variable TOct–May after that (AD 1440–1900, 2σ of 5-yr mean values = 1.3 °C). Recent decades (AD, 1991-present) were unusually warm in the context of the last millennium (exceeding the 2σ-range of the mean decadal TOct–May) but this warmth was not unprecedented. The coolest decades occurred from AD 1510–1520 and AD 1880–1890. The timing of extremely warm and cold decades is generally in good agreement with documentary data representing Switzerland and central European lowlands. The transition from relatively stable to highly variable TOct–May coincided with large changes in atmospheric circulation patterns in the North Atlantic region. Comparison of reconstructed cold season temperatures to the North Atlantic Oscillation index (NAO) during the past 1000 years showed that the relatively stable and warm conditions at the study site until AD 1440 coincided with a persistent positive mode of the NAO. We propose that the transition to large TOct–May variability around AD 1440 was linked to the subsequent absence of this persistent zonal flow pattern, which would allow other climatic drivers to gain importance in the study area. From AD 1440–1900, the similarity of reconstructed TOct–May to reconstructed air pressure in the Siberian High suggests a relatively strong influence of continental anticyclonic systems on Alpine cold season climate parameters during periods when westerly airflow was subdued. A more continental type of atmospheric circulation thus seems to be characteristic for the Little Ice Age in Europe. Comparison of Toct–May to summer temperature reconstructions from the same study site shows that, as expected, summer and cold season temperature trends and variability differed completely throughout nearly the entire last 1000 years. Since AD 1980, however, summer and cold season temperatures show a simultaneous, strong increase, which is unprecedented in the context of the last millennium. We suggest that the most likely explanation for this recent trend is anthropogenic greenhouse gas (GHG) forcing.
Resumo:
Relatively little is known about past cold-season temperature variability in high-Alpine regions because of a lack of natural cold-season temperature proxies as well as under-representation of high-altitude sites in meteorological, early-instrumental and documentary data sources. Recent studies have shown that chrysophyte stomatocysts, or simply cysts (sub-fossil algal remains of Chrysophyceae and Synurophyceae), are among the very few natural proxies that can be used to reconstruct cold-season temperatures. This study presents a quantitative, high-resolution (5-year), cold-season (Oct–May) temperature reconstruction based on sub-fossil chrysophyte stomatocysts in the annually laminated (varved) sediments of high-Alpine Lake Silvaplana, SE Switzerland (1,789 m a.s.l.), since AD 1500. We first explore the method used to translate an ecologically meaningful variable based on a biological proxy into a simple climate variable. A transfer function was applied to reconstruct the ‘date of spring mixing’ from cyst assemblages. Next, statistical regression models were tested to convert the reconstructed ‘dates of spring mixing’ into cold-season surface air temperatures with associated errors. The strengths and weaknesses of this approach are thoroughly tested. One much-debated, basic assumption for reconstructions (‘stationarity’), which states that only the environmental variable of interest has influenced cyst assemblages and the influence of confounding variables is negligible over time, is addressed in detail. Our inferences show that past cold-season air-temperature fluctuations were substantial and larger than those of other temperature reconstructions for Europe and the Alpine region. Interestingly, in this study, recent cold-season temperatures only just exceed those of previous, multi-decadal warm phases since AD 1500. These findings highlight the importance of local studies to assess natural climate variability at high altitudes.
Resumo:
External forcing and internal dynamics result in climate system variability ranging from sub-daily weather to multi-centennial trends and beyond1, 2. State-of-the-art palaeoclimatic methods routinely use hydroclimatic proxies to reconstruct temperature (for example, refs 3, 4), possibly blurring differences in the variability continuum of temperature and precipitation before the instrumental period. Here, we assess the spectral characteristics of temperature and precipitation fluctuations in observations, model simulations and proxy records across the globe. We find that whereas an ensemble of different general circulation models represents patterns captured in instrumental measurements, such as land–ocean contrasts and enhanced low-frequency tropical variability, the tree-ring-dominated proxy collection does not. The observed dominance of inter-annual precipitation fluctuations is not reflected in the annually resolved hydroclimatic proxy records. Likewise, temperature-sensitive proxies overestimate, on average, the ratio of low- to high-frequency variability. These spectral biases in the proxy records seem to propagate into multi-proxy climate reconstructions for which we observe an overestimation of low-frequency signals. Thus, a proper representation of the high- to low-frequency spectrum in proxy records is needed to reduce uncertainties in climate reconstruction efforts.
Resumo:
The western North Pacific (WNP) is the area of the world most frequently affected by tropical cyclones (TCs). However, little is known about the socio-economic impacts of TCs in this region, probably because of the limited relevant loss data. Here, loss data from Munich RE's NatCatSERVICE database is used, a high-quality and widely consulted database of natural disasters. In the country-level loss normalisation technique we apply, the original loss data are normalised to present-day exposure levels by using the respective country's nominal gross domestic product at purchasing power parity as a proxy for wealth. The main focus of our study is on the question of whether the decadal-scale TC variability observed in the Northwest Pacific region in recent decades can be shown to manifest itself economically in an associated variability in losses. It is shown that since 1980 the frequency of TC-related loss events in the WNP exhibited, apart from seasonal and interannual variations, interdecadal variability with a period of about 22 yr – driven primarily by corresponding variations of Northwest Pacific TCs. Compared to the long-term mean, the number of loss events was found to be higher (lower) by 14% (9%) in the positive (negative) phase of the decadal-scale WNP TC frequency variability. This was identified for the period 1980–2008 by applying a wavelet analysis technique. It was also possible to demonstrate the same low-frequency variability in normalised direct economic losses from TCs in the WNP region. The identification of possible physical mechanisms responsible for the observed decadal-scale Northwest Pacific TC variability will be the subject of future research, even if suggestions have already been made in earlier studies.
Resumo:
The Last Interglacial Period (LIP) is often regarded as a good analogue for potential climatic conditions under predicted global warming scenarios. Despite this, there is still debate over the nature, duration and frequency of climatic changes during this period. One particularly contentious issue has been the apparent evidence of climatic instability identified in many marine cores but seemingly lacking from many terrestrial archives, especially within the Arctic, a key region for global climate change research. In this paper, geochemical records from Lake El'gygytgyn, north-eastern Russia, are used to infer past climatic changes during the LIP from within the high Arctic. With a sampling resolution of ~20–~90 years, these records offer the potential for detailed, high-resolution palaeoclimate reconstruction. This study shows that the LIP commenced in central Chukotka ~129 thousand years ago (ka), with the warmest climatic conditions occurring between ~128 and 127 ka before being interrupted by a short-lived cold reversal. Mild climatic conditions then persisted until ~122 ka when a marked reduction in the sedimentation rate suggests a decrease in precipitation. A further climatic deterioration at ~118 ka marks the return to glacial conditions. This study highlights the value of incorporating several geochemical proxies when inferring past climatic conditions, thus providing the potential to identify signals related to environmental change within the catchment. We also demonstrate the importance of considering how changes in sedimentation rate influence proxy records, in order to develop robust palaeoenvironmental reconstructions.
Resumo:
Here we present a detailed multi-proxy record of the climate and environmental evolution at Lake El'gygytgyn, Far East Russian Arctic during the period 430–395 ka covering the marine isotope stage (MIS) 12/11 transition and the thermal maximum of super interglacial MIS 11c. The MIS 12/11 transition at Lake El'gygytgyn is characterized by initial warming followed by a cold reversal implying similarities to the last deglaciation. The thermal maximum of MIS 11c is characterized by full and remarkably stable interglacial conditions with mean temperatures of the warmest month (MTWM) ranging between ca. 10–15 °C; annual precipitation (PANN) ranging between ca. 300–600 mm; strong in-lake productivity coinciding with dark coniferous forests in the catchment; annual disintegration of the lake ice cover; and full mixis of the water column. Such conditions persisted, according to our age model, for ca. 27 ± 8 kyr between ca. 425–398 ka. The Lake El'gygytgyn record closely resembles the climate pattern recorded in Lake Baikal (SE Siberia) sediments and Antarctic ice cores, implying interhemispheric climate connectivity during MIS 11c.
Resumo:
Abstract Lake Ohrid is probably of Pliocene age, and the oldest extant lake in Europe. In this study climatic and environmental changes during the last glacial-interglacial cycle are reconstructed using lithological, sedimentological, geochemical and physical proxy analysis of a 15-m-long sediment succession from Lake Ohrid. A chronological framework is derived from tephrochronology and radiocarbon dating, which yields a basal age of ca. 136 ka. The succession is not continuous, however, with a hiatus between ca. 97.6 and 81.7 ka. Sediment accumulation in course of the last climatic cycle is controlled by the complex interaction of a variety of climate-controlled parameters and their impact on catchment dynamics, limnology, and hydrology of the lake. Warm interglacial and cold glacial climate conditions can be clearly distinguished from organic matter, calcite, clastic detritus and lithostratigraphic data. During interglacial periods, short-term fluctuations are recorded by abrupt variations in organic matter and calcite content, indicating climatically-induced changes in lake productivity and hydrology. During glacial periods, high variability in the contents of coarse silt to fine sand sized clastic matter is probably a function of climatically-induced changes in catchment dynamics and wind activity. In some instances tephra layers provide potential stratigraphic markers for short-lived climate perturbations. Given their widespread distribution in sites across the region, tephra analysis has the potential to provide insight into variation in the impact of climate and environmental change across the Mediterranean.
Resumo:
Pío XI, the largest glacier of the Southern Patagonia Icefield, reached its neoglacial maximum extent in 1994 and is one of the few glaciers in that area which is not retreating. In view of the recent warming it is important to understand glacier responses to climate changes. Due to its remoteness and the harsh conditions in Patagonia, no systematic mass balance studies have been performed. In this study we derived net accumulation rates for the period 2000–2006 from a 50 m (33.2 4 m weq) ice core collected in the accumulation area of Pío XI (2600 m a.s.l., 49°16'40"S, 73°21'14"W). Borehole temperatures indicate near temperate ice, but the average melt percent is only 16 ± 14%. Records of stable isotopes are well preserved and were used for identification of annual layers. Net accumulation rates range from 3.4–7.1 water equivalent (m weq) with an average of 5.8 m weq, comparable to precipitation amounts at the Chilean coast, but not as high as expected for the Icefield. Ice core stable isotope data correlate well with upper air temperatures and may be used as temperature proxy.