903 resultados para Proton Conductivity
Resumo:
iological optimization of proton therapy critically depends on detailed evaluation of relative biological effectiveness (RBE) variations along the Bragg curve. The clinically accepted RBE value of 1.1 is an oversimplification, which disregards the steep rise of linear energy transfer (LET) at the distal end of the spread-out Bragg peak. We observed significant cell killing RBE variations dependent on beam modulation, intrinsic radiosensitivity, and LET in agreement with the LEM predicted values, indicating dose-averaged LET as a suitable parameter for biological effectiveness. Data have also been used to validate a RBE parameterized model.
Resumo:
The collimation of proton beams accelerated during ultra-intense laser irradiation of thin aluminum foils was measured experimentally whilst varying laser contrast. Increasing the laser contrast using a double plasma mirror system resulted in a marked decrease in proton beam divergence (20° to <10°), and the enhanced collimation persisted over a wide range of target thicknesses (50 nm–6 µm), with an increased flux towards thinner targets. Supported by numerical simulation, the larger beam divergence at low contrast is attributed to the presence of a significant plasma scale length on the target front surface. This alters the fast electron generation and injection into the target, affecting the resultant sheath distribution and dynamics at the rear target surface. This result demonstrates that careful control of the laser contrast will be important for future laser-driven ion applications in which control of beam divergence is crucial.
Resumo:
In this study, some limitations associated with modeling the hydraulic conductivity of soil improved with vertical drains are discussed. In addition, some limitations of conventional methodologies for deducing the hydraulic conductivity from oedometer or Rowe cell tests are investigated. An alternative approach for estimating the hydraulic conductivity in soils improved by vertical drains is discussed. This methodology will allow for simpler finite element modeling of consolidation due to vertical drains. The effectiveness of this technique has been demonstrated using a field study.
Resumo:
In this paper the current development of the steady state migration test was reviewed. Experiments were carried out for a series of concrete mixes with the steady state migration test in which conductivity sensor technology is applied. With the developed steady state migration test, conductivity in anolyte, loop current and temperature can be monitored in real time. The experimental results are conductive to understand the mechanism of chloride migration during both unsteady state and steady state. The conductivity of anolyte could be used to calculate the chloride concentration in anolyte and the theoretical correlation between them was explained. Over all, the developed steady state migration is an effective, convenient, well-defined in theory and plentiful with information method which could be used to determine the chloride diffusion coefficient of cementitious materials.
Resumo:
The electrical conductivity of a range of concrete mixes, with and without supplementary cementitious materials (SCM), is studied through multiple cycles of heating and cooling over the extended temperature range −30/+70 °C. When presented in an Arrhenius format, the experimental results display hysteresis effects at the low-temperature end of the thermal cycle and, in those concretes containing supplementary cementitious materials at higher water/binder ratios, hysteresis effects were evident over the entire temperature range becoming more discernible with increasing number of thermal cycles. The depression in both the freezing and thawing point could be clearly identified and was used to estimate pore-neck and pore-cavity radii. A simplified approach is presented to evaluate the volumetric ratio of frozen pore water in terms of conductivity measurements. The results also show that the conductivity and activation energy of the concrete specimens were related to the water/binder ratio, type of SCM, physical state of the pore water and the thermal cycling regime.
Resumo:
In this work we examine, for the first time, the molar conductivity behavior of the deeply supercooled room temperature ionic liquid [C4mim][NTf2] in the temperature, pressure and volume thermodynamic space in terms of density scaling (TVγ)−1 combined with the equation of state (EOS). The exponent γσ determined from the Avramov model analysis is compared with the coefficient obtained from the viscosity studies carried out at moderate temperatures. Therefore, the experimental results presented herein provide the answer to the long-standing question regarding the validity of thermodynamic scaling of ionic liquids over a wide temperature range, i.e. from the normal liquid state to the glass transition point. Finally, we investigate the relationship between the dynamic and thermodynamic properties of [C4mim][NTf2] represented by scaling exponent γ and Grüneisen constant γG, respectively.
Resumo:
The liquid structure of pyridine-acetic acid mixtures have been investigated using neutron scattering at various mole fractions of acetic acid, χHOAc = 0.33, 0.50, and 0.67, and compared to the structures of neat pyridine and acetic acid. Data has been modelled using Empirical Potential Structure Refinement (EPSR) with a ‘free proton’ reference model, which has no prejudicial weighting towards either the existence of molecular or ionised species. Analysis of the neutron scattering results shows the existence of hydrogen-bonded acetic acid chains with pyridine inclusions, rather than the formation of an ionic liquid by proton transfer.
Resumo:
Spatial variability of conductivity in ceria is explored using scanning probe microscopy (SPM) with galvanostatic control. Ionically blocking electrodes are used to probe the conductivity under opposite polarities to reveal possible differences in the defect structure across a thin film of CeO2. Data suggests the existence of a large spatial inhomogeneity that could give rise to constant phase elements during standard electrochemical characterization, potentially affecting the overall conductivity of films on the macroscale. The approach discussed here can also be utilized for other mixed ionic electronic conductor (MIEC) systems including memristors and electroresistors, as well as physical systems such as ferroelectric tunneling barriers.
Resumo:
Secondary active transport of substrates across the inner membrane is vital to the bacterial cell. Of the secondary active transporter families, the ubiquitous major facilitator superfamily (MFS) is the largest and most functionally diverse (Reddy et al., 2012). Recently, it was reported that the MFS multidrug efflux protein MdtM from Escherichia coli (E. coli) functions physiologically in protection of bacterial cells against bile salts (Paul et al., 2014). The MdtM transporter imparts bile salt resistance to the bacterial cell by coupling the exchange of external protons (H+) to the efflux of bile salts from the cell interior via an antiport reaction. This protocol describes, using fluorometry, how to detect the bile salt/H+ antiport activity of MdtM in inverted membrane vesicles of an antiporter-deficient strain of E. coli TO114 cells by measuring transmembrane ∆pH. This method exploits the changes that occur in the intensity of the fluorescence signal (quenching and dequenching) of the pH-sensitive dye acridine orange in response to changes in [H+] in the vesicular lumen. Due to low levels of endogenous transporter expression that would normally make the contribution of individual transporters such as MdtM to proton-driven antiport difficult to detect, the method typically necessitates that the transporter of interest be overexpressed from a multicopy plasmid. Although the first section of the protocol described here is very specific to the overexpression of MdtM from the pBAD/Myc-His A expression vector, the protocol describing the subsequent measurement of bile salt efflux by MdtM can be readily adapted for measurement of antiport of other substrates by any other antiporter that exchanges protons for countersubstrate.
Resumo:
Ion acceleration from relativistic laser solid interactions has been of particular interest over the last decade. While beam profiles have been studied for target normal sheath acceleration (TNSA), such profiles have yet to be described for other mechanisms. Here, experimental data is presented, investigating ion beam profiles from acceleration governed by relativistic transparent laser plasma interaction. The beam shape of carbon C6+ ions and protons has been measured simultaneously with a wide angle spectrometer. It was found that ion beams deviate from the typical Gaussian-like shape found with TNSA and that the profile is governed by electron dynamics in the volumetric laser-plasma interaction with a relativistically transparent plasma; due to the ponderomotive force electrons are depleted from the center of the laser axis and form lobes affecting the ion beam structure. The results are in good agreement with high resolution three-dimensional-VPIC simulations and can be used as a new tool to experimentally distinguish between different acceleration mechanisms.
Resumo:
The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. We report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by X-ray Thomson scattering (XRTS) to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.
Resumo:
A procedure for the determination of three commonly encountered ecstasy type drugs has been demonstrated using proton nuclear magnetic resonance spectrometry (H-1-NMR).