960 resultados para Proliferative verrucous leukoplakia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Notochordal cells (NC) are shifted back into focus due to their apparent action of activating other disc cells via indirect release of yet unknown factors into the medium (conditioned medium = CM).1,2 Recent evidence confirms the results from the late 1990s.3,4 Here, we test porcine (p) NC cultured in 3D and the influence of adding serum or using serum-free medium onto the culture on NC cells and its stimulating effects for subsequent coculture with primary bovine (b) nucleus pulposus (bNPC) and annulus fibrous cells (bAFC). Materials and Methods Primary pNC, bNPC, and bAFC were isolated from porcine tails (< 6-12 months age) or bovine tails (∼1 year age), which were obtained from the food chain (N = 4 repeats) within 4 hours postmortem. All cells were seeded into 1.2% alginate, each with a density of 4 × 106/mL. NC were then either cultured for 7 days in serum free medium (SFM = Dulbecco modified eagle medium [DMEM] supplied with ITS+, 50 µg/mL vitamin C and nonessential amino acids) or DMEM + 10% fetal calf serum (FCS). CM was produced from NC collecting 4 mL SFM and keeping approximately 30 beads for 7 days. Then, a coculture was set up in SFM for 14 days using indirect cell-cell contact (culture insert, high density pore, 0.4 µm) using a 50:50% ratio5 of pNC:bNP or bAF, or by addition of CM, respectively. The cell activity, glycosaminoglycan per DNA (GAG/DNA) ratio, and real-time RT-PCR of IVD relevant genes were monitored. Mass spectrometry was performed on the SFM and the cocultured medium as well as the CM of the pNC to identify possible key cytokines to the stimulatory effects. Results The results for cell activity confirmed that pNC are highly responsive on the nutritional condition in the culture (K-W test, p = 0.048) after 7 days of coculture. bNPC and bAFC did not respond significantly different to coculture or addition of CM with respect to cell activity. However, GAG/DNA ratio of pNC was significantly upregulated if they were initially pre-exposed to FCS and in coculture with bNPC after 14 days, for both normoxia and hypoxia (K-W, p = 0.03). The bNPC were stimulated by both, 1:1 coculture with pNC but also by addition of CM only, which resulted in approximately 200% increased GAG/DNA values relative to the day 0 state. However, this doubling of the GAG/DNA ratio was nonsignificant after 14 days. The aggrecan/collagen type 2 ratio as quantified from real-time RT-PCR pointed to a beneficial state of the bNPC if cultured either in indirect coculture with pNC or by the addition of CM (Fig. 1). The mass spectrometric analysis of the CM revealed that there was connecting tissue growth factor present (CTGF) among the cytokine CLC11, a cytokine that has been found to be expressed in skeletal tissues including bone marrow and chondrocytes among other factors that might have immunoregulatory and cell proliferative functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are expected to have a fundamental role in future cell-based therapies because of their high proliferative ability, multilineage potential, and immunomodulatory properties. Autologous transplantations have the "elephant in the room" problem of wide donor variability, reflected by variability in MSC quality and characteristics, leading to uncertain outcomes in the use of these cells. We propose life imaging as a tool to characterize populations of human MSCs. Bone marrow MSCs from various donors and in vitro passages were evaluated for their in vitro motility, and the distances were correlated to the adipogenic, chondrogenic, and osteogenic differentiation potentials and the levels of senescence and cell size. Using life-image measuring of track lengths of 70 cells per population for a period of 24 hours, we observed that slow-moving cells had the higher proportion of senescent cells compared with fast ones. Larger cells moved less than smaller ones, and spindle-shaped cells had an average speed. Both fast cells and slow cells were characterized by a low differentiation potential, and average-moving cells were more effective in undergoing all three lineage differentiations. Furthermore, heterogeneity in single cell motility within a population correlated with the average-moving cells, and fast- and slow-moving cells tended toward homogeneity (i.e., a monotonous moving pattern). In conclusion, in vitro cell motility might be a useful tool to quickly characterize and distinguish the MSC population's differentiation potential before additional use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of the large number of different tissues making up the distal phalanx of fingers and toes, a large variety of malignant tumors can be found in and around the nail apparatus. Bowen disease is probably the most frequent nail malignancy. It is usually seen as a verrucous plaque of the nail fold and nail bed in persons above the age of 40 years. It slowly grows over a period of years or even decades before degenerating to an invasive squamous cell carcinoma. The latter may also occur primarily often as a weeping onycholysis. The next most frequent nail malignancy is ungual melanoma. Those arising from the matrix are usually pigmented and often start with a longitudinal melanonychia whereas those originating from the nail bed remain amelanotic, are often nodular and mistaken for an ingrown nail in an elderly person. The treatment of choice for in situ and early invasive subungual melanomas is generous extirpation of the nail apparatus whereas distal amputation is only indicated for advanced melanomas. In addition to these frequent nail malignancies, nail-specific carcinomas, malignant vascular and osseous tumors, other sarcomas, nail involvement in malignant systemic disorders and metastases may occur. In most cases, they cannot be diagnosed accurately on clinical grounds. Therefore, a high degree of suspicion is necessary in all isolated or single-digit proliferations that do not respond to conservative treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background/Aims: Ceramide kinase (CerK) catalyzes the generation of the sphingolipid ceramide-1-phosphate (C1P) which regulates various cellular functions including cell growth and death, and inflammation. Here, we used a novel catalytic inhibitor of CerK, NVP-231, and CerK knockout cells to investigate the contribution of CerK to proliferation and inflammation in renal mesangial cells and fibroblasts. Methods: Cells were treated with NVP-231 and [3H]-thymidine incorporation into DNA, [3H]-arachidonic acid release, prostaglandin E2 (PGE2) synthesis, cell cycle distribution, and apoptosis were determined. Results: Treatment of rat mesangial cells and mouse renal fibroblasts with NVP-231 decreased DNA synthesis, but not of agonist-stimulated arachidonic acid release or PGE2 synthesis. Similarly, proliferation but not arachidonic acid release or PGE2 synthesis was reduced in CERK knockout renal fibroblasts. The anti-proliferative effect of NVP-231 on mesangial cells was due to M phase arrest as determined using the mitosis markers phospho-histone H3, cdc2 and polo-like kinase-1, and induction of apoptosis. Moreover, loss of CerK sensitized cells towards stress-induced apoptosis. Conclusions: Our data demonstrate that CerK induces proliferation but not PGE2 formation of renal mesangial cells and fibroblasts, and suggest that targeted CerK inhibition has potential for treating mesangioproliferative kidney diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Medulloblastoma (MB), the most common pediatric malignant brain cancer, typically arises as pathological result of deregulated developmental pathways, including the NOTCH signaling cascade. Unlike the evidence supporting a role for NOTCH receptors in MB development, the pathological functions of NOTCH ligands remain largely unexplored. By examining the expression in large cohorts of MB primary tumors, and in established in vitro MB models, this research study demonstrates that MB cells bear abnormal levels of distinct NOTCH ligands. We explored the potential association between NOTCH ligands and the clinical outcome of MB patients, and investigated the rational of inhibiting NOTCH signaling by targeting specific ligands to ultimately provide therapeutic benefits in MB. The research revealed a significant over-expression of ligand JAG1 in the vast majority of MBs, and proved that JAG1 mediates pro-proliferative signals via activation of NOTCH2 receptor and induction of HES1 expression, thus representing an attractive therapeutic target. Furthermore, we could identify a clinically relevant association between ligand JAG2 and the oncogene MYC, specific for MYC-driven Group 3 MB cases. We describe for the first time a mechanistic link between the oncogene MYC and NOTCH pathway in MB, by identifying JAG2 as MYC target, and by showing that MB cells acquire induced expression of JAG2 through MYC-induced transcriptional activation. Finally, the positive correlation of MYC and JAG2 also with aggressive anaplastic tumors and highly metastatic MB stages suggested that high JAG2 expression may be useful as additional marker to identify aggressive MBs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MicroRNA miR-199a-5p impairs tight junction formation leading to increased urothelial permeability in bladder pain syndrome. Now using transcriptome analysis in urothelial TEU-2 cells we implicate it in the regulation of cell cycle, cytoskeleton remodeling, TGF and Wnt signaling pathways. MiR-199a-5p is highly expressed in the smooth muscle layer of the bladder and we altered its levels in bladder smooth muscle cells (SMC) to validate the pathway analysis. Inhibition of miR-199a-5p with antimiR increased SMC proliferation, reduced cell size and up-regulated miR-199a-5p targets, including Wnt2. Overexpression of Wnt2 protein or treating SMCs with recombinant Wnt2 closely mimicked the miR-199a-5p inhibition, whereas down-regulation of Wnt2 in antimiR-expressing SMCs with shRNA restored cell phenotype and proliferation rates. Overexpression of miR-199a-5p in the bladder SMCs significantly increased cell size and up-regulated SM22, SM alpha-actin and SM myosin heavy chain mRNA and protein levels. These changes, as well as increased expression of ACTG2, TGFB1I1, and CDKN1A were mediated by up-regulation of smooth muscle-specific transcriptional activator myocardin at mRNA and protein levels. Myocardin-related transcription factor (MRTF-A) downstream targets Id3 and MYL9 were also induced. Up-regulation of myocardin was accompanied by down-regulation of Wnt-dependent inhibitory Kruppel-like transcription factor 4 (KLF4) in miR-199a-5p overexpressing cells. In contrast, KLF4 was induced in antimiR-expressing cells following the activation of Wnt2 signaling, leading to repression of myocardin-dependent genes. MiR-199a-5p plays a critical role in the Wnt2-mediated regulation of proliferative and differentiation processes in the smooth muscle and may behave as a key modulator of smooth muscle hypertrophy, relevant for organ remodeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regulatory T cells (Tregs), which are characterized by expression of the transcription factor Foxp3, are a dynamic and heterogeneous population of cells that control immune responses and prevent autoimmunity. We recently identified a subset of Tregs in murine skin with properties typical of memory cells and defined this population as memory Tregs (mTregs). Due to the importance of these cells in regulating tissue inflammation in mice, we analyzed this cell population in humans and found that almost all Tregs in normal skin had an activated memory phenotype. Compared with mTregs in peripheral blood, cutaneous mTregs had unique cell surface marker expression and cytokine production. In normal human skin, mTregs preferentially localized to hair follicles and were more abundant in skin with high hair density. Sequence comparison of TCRs from conventional memory T helper cells and mTregs isolated from skin revealed little homology between the two cell populations, suggesting that they recognize different antigens. Under steady-state conditions, mTregs were nonmigratory and relatively unresponsive; however, in inflamed skin from psoriasis patients, mTregs expanded, were highly proliferative, and produced low levels of IL-17. Taken together, these results identify a subset of Tregs that stably resides in human skin and suggest that these cells are qualitatively defective in inflammatory skin disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A lipidomic and metabolomic investigation of serum and liver from mice was performed to gain insight into the tumor suppressor gene Hint1. A major reprogramming of lipid homeostasis was found in both serum and liver of Hint1-null (Hint(-/-)) mice, with significant changes in the levels of many lipid molecules, as compared with gender-, age-, and strain-matched WT mice. In the Hint1(-/-) mice, serum total and esterified cholesterol were reduced 2.5-fold, and lysophosphatidylcholines (LPCs) and lysophosphatidic acids were 10-fold elevated in serum, with a corresponding fall in phosphatidylcholines (PCs). In the liver, MUFAs and PUFAs, including arachidonic acid (AA) and its metabolic precursors, were also raised, as was mRNA encoding enzymes involved in AA de novo synthesis. There was also a significant 50% increase in hepatic macrophages in the Hint1(-/-) mice. Several hepatic ceramides and acylcarnitines were decreased in the livers of Hint1(-/-) mice. The changes in serum LPCs and PCs were neither related to hepatic phospholipase A2 activity nor to mRNAs encoding lysophosphatidylcholine acetyltransferases 1-4. The lipidomic phenotype of the Hint1(-/-) mouse revealed decreased inflammatory eicosanoids with elevated proliferative mediators that, combined with decreased ceramide apoptosis signaling molecules, may contribute to the tumor suppressor activity of Hint1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lawsonia intracellularis is the causative agent of porcine proliferative enteropathy. The clinical presentation can be acute (i.e. proliferative hemorrhagic enteropathy, PHE), chronic (i.e. porcine intestinal adenomatosis, PIA) or subclinical. In humans with chronic enteropathies, low serum folate (vitamin B(9)) and cobalamin (vitamin B(12)) concentrations have been associated with increased serum concentrations of homocysteine and methylmalonic acid (MMA), which reflect the availability of both vitamins at the cellular level. The aim of this study was to evaluate serum folate, cobalamin, homocysteine and MMA concentrations in serum samples from pigs with PHE, PIA or subclinical L. intracellularis infection, and in negative controls. Serum folate, cobalamin, homocysteine and MMA concentrations differed significantly among pigs in the PHE, PIA, subclinical and negative control groups. Serum folate concentrations in the PHE and PIA groups were lower than in the subclinical and negative control groups, while serum cobalamin concentrations were lower in the PIA group than in other groups. Serum concentrations of homocysteine were higher in the PHE, PIA and subclinical groups than in the negative control group. Serum concentrations of MMA were higher in the subclinical and PIA groups than in the control group. These data suggest that pigs infected with L. intracellularis have altered serum cobalamin, folate, homocysteine and MMA concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of naturally occurring human α1a-Adrenergic Receptor (α1aAR) genetic variants associated with cardiovascular disorders is poorly understood. Here, we present the novel findings that expression of human α1aAR-247R (247R) genetic variant in cardiomyoblasts leads to transition of cardiomyoblasts into a fibroblast-like phenotype, evidenced by morphology and distinct de novo expression of characteristic genes. These fibroblast-like cells exhibit constitutive, high proliferative capacity and agonist-induced hypertrophy compared with cells prior to transition. We demonstrate that constitutive, synergistic activation of EGFR, Src and ERK kinases is the potential molecular mechanism of this transition. We also demonstrate that 247R triggers two distinct EGFR transactivation-dependent signaling pathways: 1) constitutive Gq-independent β-arrestin-1/Src/MMP/EGFR/ERK-dependent hyperproliferation and 2) agonist-induced Gq- and EGFR/STAT-dependent hypertrophy. Interestingly, in cardiomyoblasts agonist-independent hyperproliferation is MMP-dependent, but in fibroblast-like cells it is MMP-independent, suggesting that expression of α1aAR genetic variant in cardiomyocytes may trigger extracellular matrix remodeling. Thus, these novel findings demonstrate that EGFR transactivation by α1aAR-247R leads to hyperproliferation, hypertrophy and alterations in cardiomyoblasts, suggesting that these unique genetically-mediated alterations in signaling pathways and cellular function may lead to myocardial fibrosis. Such extracellular matrix remodeling may contribute to the genesis of arrhythmias in certain types of heart failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Developmental assembly of the renal microcirculation is a precise and coordinated process now accessible to experimental scrutiny. Although definition of the cellular and molecular determinants is incomplete, recent findings have reframed concepts and questions about the origins of vascular cells in the glomerulus and the molecules that direct cell recruitment, specialization and morphogenesis. New findings illustrate principles that may be applied to defining critical steps in microvascular repair following glomerular injury. Developmental assembly of endothelial, mesangial and epithelial cells into glomerular capillaries requires that a coordinated, temporally defined series of steps occur in an anatomically ordered sequence. Recent evidence shows that both vasculogenic and angiogenic processes participate. Local signals direct cell migration, proliferation, differentiation, cell-cell recognition, formation of intercellular connections, and morphogenesis. Growth factor receptor tyrosine kinases on vascular cells are important mediators of many of these events. Cultured cell systems have suggested that basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF) promote endothelial cell proliferation, migration or morphogenesis, while genetic deletion experiments have defined an important role for PDGF beta receptors and platelet-derived growth factor (PDGF) B in glomerular development. Receptor tyrosine kinases that convey non-proliferative signals also contribute in kidney and other sites. The EphB1 receptor, one of a diverse class of Eph receptors implicated in neural cell targeting, directs renal endothelial migration, cell-cell recognition and assembly, and is expressed with its ligand in developing glomeruli. Endothelial TIE2 receptors bind angiopoietins (1 and 2), the products of adjacent supportive cells, to signals direct capillary maturation in a sequence that defines cooperative roles for cells of different lineages. Ultimately, definition of the cellular steps and molecular sequence that direct microvascular cell assembly promises to identify therapeutic targets for repair and adaptive remodeling of injured glomeruli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Neuroendocrine neoplasms (NENs) are difficult to diagnose. We used SwissNET data to characterise NEN patients followed in the two academic centres of western Switzerland (WS), and to compare them with patients followed in eastern Switzerland (ES) as well as with international guidelines. METHOD SwissNET is a prospective database covering data from 522 consecutive patients (285 men, 237 women) from WS (n = 99) and ES (n = 423). RESULTS Mean ± SD age at diagnosis was 59.0 ± 15.7 years. Overall, 76/522 experienced a functional syndrome, with a median interval of 1.0 (IQR: 1.0-3.0) year between symptoms onset and diagnosis. A total of 51/522 of these tumours were incidental. The primary tumour site was the small intestine (29%), pancreas (21%), appendix (18%) and lung (11%) in both regions combined. In all, 513 functional imaging studies were obtained (139 in WS, 374 in ES). Of these, 381 were 111In-pentetreotide scintigraphies and 20 were 68Ga-DOTATOC PET. First line therapy was surgery in 87% of patients, medical therapy (biotherapy or chemotherapy) in 9% and irradiation in 3% for both regions together. CONCLUSION Swiss NEN patients appear similar to what has been described in the literature. Imaging by somatostatin receptor scintigraphy (SRS) is widely used in both regions of Switzerland. In good accordance with published guidelines, data on first line therapy demonstrate the crucial role of surgery. The low incidence of biotherapy suggests that long-acting somatostatin analogues are not yet widely used for their anti-proliferative effects. The SwissNET initiative should help improve compliance with ENETS guidelines in the workup and care of NEN patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE To assess endometrial gene as well as protein expression of neuroendocrine and supposedly endometriosis-associated product PGP9.5 and pain symptoms in women with endometriosis and controls undergoing laparoscopy, using molecular biological and immuno-histochemical approaches in the same patients. METHODS Biopsy of eutopic endometrium from 29 patients by sharp curettage, and preparation of paraffin blocks. Determination of PGP9.5 gene expression and protein abundance using qPCR and immuno-histochemistry. RESULTS qPCR; The PGP9.5 mRNA expression level between women with (N = 16) and without (N = 13) endometriosis was not different, regardless of pain symptoms or menstrual cycle phase. PGP9.5 expression was higher in women who reported pain compared to those who did not; however, this association was not statistically significant. The expression of PGP9.5 mRNA was higher in women with endometriosis and pain during the proliferative than in the secretory phase (P = 0.03). Furthermore, in the first half of the cycle, the abundance of the PGP9.5 transcript was also significantly higher in endometriosis patients compared to those without (P = 0.03). Immuno-histochemistry; Thirteen of the 16 endometriosis patients showed positive PGP9.5 immuno-reactivity in the endometrium, whereas no such signal was observed in women without endometriosis. The absolute number of nerve fibres per mm(2) in women with endometriosis was similar, regardless of the pain symptoms. CONCLUSIONS PGP9.5 mRNA expression is increased in the proliferative phase of endometriotic women with pain. The presence of nerve fibres was demonstrated by a PGP9.5 protein signal in immuno-histochemistry and restricted to patients with endometriosis. Based on these results, however, there did not appear to be a direct association between the gene expression and protein abundance in women with and without endometriosis or those that experienced pain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND The growth potential of the tumor-like Echinococcus multilocularis metacestode (causing alveolar echinococcosis, AE) is directly linked to the nature/function of the periparasitic host immune-mediated processes. We previously showed that Fibrinogen-like-protein 2 (FGL2), a novel CD4+CD25+ Treg effector molecule, was over-expressed in the liver of mice experimentally infected with E. multilocularis. However, little is known about its contribution to the control of this chronic helminth infection. METHODS/FINDINGS Key parameters for infection outcome in E. multilocularis-infected fgl2-/- (AE-fgl2-/-) and wild type (AE-WT) mice at 1 and 4 month(s) post-infection were (i) parasite load (i. e. wet weight of parasitic metacestode tissue), and (ii) parasite cell proliferation as assessed by determining E. multilocularis 14-3-3 gene expression levels. Serum FGL2 levels were measured by ELISA. Spleen cells cultured with ConA for 48h or with E. multilocularis Vesicle Fluid (VF) for 96h were analyzed ex-vivo and in-vitro. In addition, spleen cells from non-infected WT mice were cultured with rFGL2/anti-FGL2 or rIL-17A/anti-IL-17A for further functional studies. For Treg-immune-suppression-assays, purified CD4+CD25+ Treg suspensions were incubated with CD4+ effector T cells in the presence of ConA and irradiated spleen cells as APCs. Flow cytometry and qRT-PCR were used to assess Treg, Th17-, Th1-, Th2-type immune responses and maturation of dendritic cells. We showed that AE-fgl2-/- mice exhibited (as compared to AE-WT-animals) (a) a significantly lower parasite load with reduced proliferation activity, (b) an increased T cell proliferative response to ConA, (c) reduced Treg numbers and function, and (d) a persistent capacity of Th1 polarization and DC maturation. CONCLUSIONS FGL2 appears as one of the key players in immune regulatory processes favoring metacestode survival by promoting Treg cell activity and IL-17A production that contributes to FGL2-regulation. Prospectively, targeting FGL2 could be an option to develop an immunotherapy against AE and other chronic parasitic diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND/AIMS Important characteristics of neuroendocrine neoplasms (NEN) for prognosis and therapeutic decisions are the MIB-1 proliferative index (tumor grade) and tumor stage. Moreover, these tumors express peptide hormone receptors like somatostatin and gastric inhibitory peptide (GIP) receptors which represent important established and potential future targets, respectively, for molecular imaging and radiotherapy. However, the interrelation between tumor proliferation, stage, and peptide receptor amounts has never been assessed. METHODS In 114 gastrointestinal and bronchopulmonary NEN, the proliferative rate assessed with MIB-1 immunohistochemistry and tumor stage were compared with the somatostatin type 2 receptor (sst2) and GIP receptor expression measured quantitatively with in vitro receptor autoradiography. RESULTS NEN generally showed high sst2 and GIP receptor expression. GIP receptor but not sst2 expression correlated with the MIB-1 index. GIP receptor levels gradually increased in a subset of insulinomas and nonfunctioning pancreatic NEN, and decreased in ileal and bronchopulmonary NEN with increasing MIB-1 rate. MIB-1 levels were identified, above which GIP receptor levels were consistently high or low. These MIB-1 levels were clearly different from those defining tumor grade. In grade 3 NEN, GIP receptor levels were always low, while sst2 levels were variable and sometimes extremely high. Conversely, sst2 expression correlated more frequently with tumor stage than GIP receptor expression, with metastasized NEN showing higher sst2 levels than localized tumors. CONCLUSIONS sst2, a clinically crucial molecular target, shows variable and unpredictable expression in NEN irrespective of tumor grade. Therefore, each NEN should be tested for sst2 if clinical applications with somatostatin analogs are considered. Conversely, the potential future role of GIP receptors as molecular targets in NEN may be dependent on the MIB-1 level.