961 resultados para Problem formulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes the working of National Centers for Coastal Ocean Service (NCCOS) Wave Exposure Model (WEMo) capable of predicting the exposure of a site in estuarine and closed water to local wind generated waves. WEMo works in two different modes: the Representative Wave Energy (RWE) mode calculates the exposure using physical parameters like wave energy and wave height, while the Relative Exposure Index (REI) empirically calculates exposure as a unitless index. Detailed working of the model in both modes and their procedures are described along with a few sample runs. WEMo model output in RWE mode (wave height and wave energy) is compared against data collected from wave sensors near Harkers Island, North Carolina for validation purposes. Computed results agreed well with the wave sensors data indicating that WEMo can be an effective tool in predicting local wave energy in closed estuarine environments. (PDF contains 31 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Linear Ordering Problem is a popular combinatorial optimisation problem which has been extensively addressed in the literature. However, in spite of its popularity, little is known about the characteristics of this problem. This paper studies a procedure to extract static information from an instance of the problem, and proposes a method to incorporate the obtained knowledge in order to improve the performance of local search-based algorithms. The procedure introduced identifies the positions where the indexes cannot generate local optima for the insert neighbourhood, and thus global optima solutions. This information is then used to propose a restricted insert neighbourhood that discards the insert operations which move indexes to positions where optimal solutions are not generated. In order to measure the efficiency of the proposed restricted insert neighbourhood system, two state-of-the-art algorithms for the LOP that include local search procedures have been modified. Conducted experiments confirm that the restricted versions of the algorithms outperform the classical designs systematically. The statistical test included in the experimentation reports significant differences in all the cases, which validates the efficiency of our proposal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

157 p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy functions (or characteristic functions) and basic equations for ferroelectrics in use today are given by those for ordinary dielectrics in the physical and mechanical communications. Based on these basic equations and energy functions, the finite element computation of the nonlinear behavior of the ferroelectrics has been carried out by several research groups. However, it is difficult to process the finite element computation further after domain switching, and the computation results are remarkably deviating from the experimental results. For the crack problem, the iterative solution of the finite element calculation could not converge and the solutions for fields near the crack tip oscillate. In order to finish the calculation smoothly, the finite element formulation should be modified to neglect the equivalent nodal load produced by spontaneous polarization gradient. Meanwhile, certain energy functions for ferroelectrics in use today are not compatible with the constitutive equations of ferroelectrics and need to be modified. This paper proposes a set of new formulae of the energy functions for ferroelectrics. With regard to the new formulae of the energy functions, the new basic equations for ferroelectrics are derived and can reasonably explain the question in the current finite element analysis for ferroelectrics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new high-order finite volume method based on local reconstruction is presented in this paper. The method, so-called the multi-moment constrained finite volume (MCV) method, uses the point values defined within single cell at equally spaced points as the model variables (or unknowns). The time evolution equations used to update the unknowns are derived from a set of constraint conditions imposed on multi kinds of moments, i.e. the cell-averaged value and the point-wise value of the state variable and its derivatives. The finite volume constraint on the cell-average guarantees the numerical conservativeness of the method. Most constraint conditions are imposed on the cell boundaries, where the numerical flux and its derivatives are solved as general Riemann problems. A multi-moment constrained Lagrange interpolation reconstruction for the demanded order of accuracy is constructed over single cell and converts the evolution equations of the moments to those of the unknowns. The presented method provides a general framework to construct efficient schemes of high orders. The basic formulations for hyperbolic conservation laws in 1- and 2D structured grids are detailed with the numerical results of widely used benchmark tests. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to propose a new solution for the roommate problem with strict preferences. We introduce the solution of maximum irreversibility and consider almost stable matchings (Abraham et al. [2])and maximum stable matchings (Ta [30] [32]). We find that almost stable matchings are incompatible with the other two solutions. Hence, to solve the roommate problem we propose matchings that lie at the intersection of the maximum irreversible matchings and maximum stable matchings, which are called Q-stable matchings. These matchings are core consistent and we offer an effi cient algorithm for computing one of them. The outcome of the algorithm belongs to an absorbing set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of "exit against a flow" for dynamical systems subject to small Gaussian white noise excitation is studied. Here the word "flow" refers to the behavior in phase space of the unperturbed system's state variables. "Exit against a flow" occurs if a perturbation causes the phase point to leave a phase space region within which it would normally be confined. In particular, there are two components of the problem of exit against a flow:

i) the mean exit time

ii) the phase-space distribution of exit locations.

When the noise perturbing the dynamical systems is small, the solution of each component of the problem of exit against a flow is, in general, the solution of a singularly perturbed, degenerate elliptic-parabolic boundary value problem.

Singular perturbation techniques are used to express the asymptotic solution in terms of an unknown parameter. The unknown parameter is determined using the solution of the adjoint boundary value problem.

The problem of exit against a flow for several dynamical systems of physical interest is considered, and the mean exit times and distributions of exit positions are calculated. The systems are then simulated numerically, using Monte Carlo techniques, in order to determine the validity of the asymptotic solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some problems of edge waves and standing waves on beaches are examined.

The nonlinear interaction of a wave normally incident on a sloping beach with a subharmonic edge wave is studied. A two-timing expansion is used in the full nonlinear theory to obtain the modulation equations which describe the evolution of the waves. It is shown how large amplitude edge waves are produced; and the results of the theory are compared with some recent laboratory experiments.

Traveling edge waves are considered in two situations. First, the full linear theory is examined to find the finite depth effect on the edge waves produced by a moving pressure disturbance. In the second situation, a Stokes' expansion is used to discuss the nonlinear effects in shallow water edge waves traveling over a bottom of arbitrary shape. The results are compared with the ones of the full theory for a uniformly sloping bottom.

The finite amplitude effects for waves incident on a sloping beach, with perfect reflection, are considered. A Stokes' expansion is used in the full nonlinear theory to find the corrections to the dispersion relation for the cases of normal and oblique incidence.

Finally, an abstract formulation of the linear water waves problem is given in terms of a self adjoint but nonlocal operator. The appropriate spectral representations are developed for two particular cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the following singularly perturbed linear two-point boundary-value problem:

Ly(x) ≡ Ω(ε)D_xy(x) - A(x,ε)y(x) = f(x,ε) 0≤x≤1 (1a)

By ≡ L(ε)y(0) + R(ε)y(1) = g(ε) ε → 0^+ (1b)

Here Ω(ε) is a diagonal matrix whose first m diagonal elements are 1 and last m elements are ε. Aside from reasonable continuity conditions placed on A, L, R, f, g, we assume the lower right mxm principle submatrix of A has no eigenvalues whose real part is zero. Under these assumptions a constructive technique is used to derive sufficient conditions for the existence of a unique solution of (1). These sufficient conditions are used to define when (1) is a regular problem. It is then shown that as ε → 0^+ the solution of a regular problem exists and converges on every closed subinterval of (0,1) to a solution of the reduced problem. The reduced problem consists of the differential equation obtained by formally setting ε equal to zero in (1a) and initial conditions obtained from the boundary conditions (1b). Several examples of regular problems are also considered.

A similar technique is used to derive the properties of the solution of a particular difference scheme used to approximate (1). Under restrictions on the boundary conditions (1b) it is shown that for the stepsize much larger than ε the solution of the difference scheme, when applied to a regular problem, accurately represents the solution of the reduced problem.

Furthermore, the existence of a similarity transformation which block diagonalizes a matrix is presented as well as exponential bounds on certain fundamental solution matrices associated with the problem (1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unremitting waves and occasional storms bring dynamic forces to bear on the coast. Sediment flux results in various patterns of erosion and accretion, with an overwhelming majority (80 to 90 percent) of coastline in the eastern U.S. exhibiting net erosion in recent decades. Climate change threatens to increase the intensity of storms and raise sea level 18 to 59 centimeters over the next century. Following a lengthy tradition of economic models for natural resource management, this paper provides a dynamic optimization model for managing coastal erosion and explores the types of data necessary to employ the model for normative policy analysis. The model conceptualizes benefits of beach and dune sediments as service flows accruing to nearby residential property owners, local businesses, recreational beach users, and perhaps others. Benefits can also include improvements in habitat for beach- and dune-dependent plant and animal species. The costs of maintaining beach sediment in the presence of coastal erosion include expenditures on dredging, pumping, and placing sand on the beach to maintain width and height. Other costs can include negative impacts on the nearshore environment. Employing these constructs, an optimal control model is specified that provides a framework for identifying the conditions under which beach replenishment enhances economic welfare and an optimal schedule for replenishment can be derived under a constant sea level and erosion rate (short term) as well as an increasing sea level and erosion rate (long term). Under some simplifying assumptions, the conceptual framework can examine the time horizon of management responses under sea level rise, identifying the timing of shift to passive management (shoreline retreat) and exploring factors that influence this potential shift. (PDF contains 4 pages)