937 resultados para Probability densities
Resumo:
* The work is supported by RFBR, grant 04-01-00858-a
Resumo:
In the teletraffic engineering of all the telecommunication networks, parameters characterizing the terminal traffic are used. One of the most important of them is the probability of finding the called (B-terminal) busy. This parameter is studied in some of the first and last papers in Teletraffic Theory. We propose a solution in this topic in the case of (virtual) channel systems, such as PSTN and GSM. We propose a detailed conceptual traffic model and, based on it, an analytical macro-state model of the system in stationary state, with: Bernoulli– Poisson–Pascal input flow; repeated calls; limited number of homogeneous terminals; losses due to abandoned and interrupted dialling, blocked and interrupted switching, not available intent terminal, blocked and abandoned ringing and abandoned conversation. Proposed in this paper approach may help in determination of many network traffic characteristics at session level, in performance evaluation of the next generation mobile networks.
Resumo:
The method for the computation of the conditional probability density function for the nonlinear Schrödinger equation with additive noise is developed. We present in a constructive form the conditional probability density function in the limit of small noise and analytically derive it in a weakly nonlinear case. The general theory results are illustrated using fiber-optic communications as a particular, albeit practically very important, example.
Resumo:
2000 Mathematics Subject Classification: 60J80
Resumo:
Евелина Илиева Велева - Разпределението на Уишарт се среща в практиката като разпределението на извадъчната ковариационна матрица за наблюдения над многомерно нормално разпределение. Изведени са някои маргинални плътности, получени чрез интегриране на плътността на Уишарт разпределението. Доказани са необходими и достатъчни условия за положителна определеност на една матрица, които дават нужните граници за интегрирането.
Resumo:
2002 Mathematics Subject Classification: 60K25.
Resumo:
2000 Mathematics Subject Classification: 60F05, 60B10.
Resumo:
2000 Mathematics Subject Classi cation: Primary 90C31. Secondary 62C12, 62P05, 93C41.
Resumo:
2000 Mathematics Subject Classification: 60J65.
Resumo:
In this note we discuss upper and lower bound for the ruin probability in an insurance model with very heavy-tailed claims and interarrival times.
Resumo:
2000 Mathematics Subject Classification: 62H10.
Resumo:
2000 Mathematics Subject Classification: 65C05
Resumo:
2000 Mathematics Subject Classification: 33C90, 62E99
Resumo:
2010 Mathematics Subject Classification: 62H10.
Resumo:
2000 Mathematics Subject Classification: 62G07, 62L20.