977 resultados para Preiction error methods
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2012
Resumo:
This paper is a joined publication of the Depts. of Genetics and of Technology, of the E. S. A. "Luiz de Queiroz", Universidade de São Paulo, and deals with the variation of the percentage oil content in the whole seeds, the embryos and the seed-coat of 28 varieties of castor-beans (Ricinus communis, L.). Primarily, the authors, as a justification of this paper, make reference to the applications which castor-oil has in industry, medicine, etc. In accordance with the weight of 100 seeds, the varieties of castor-beans were classified into 3 classes : small seeds (100 seeds less than 30 g), medium seeds (100 seeds between 30 g and 60) and large seeds (100 seeds more than 60 g). The percentage of oil in the seed, embryo and seed-coat, the dimensions of the seeds and the weight of 100 seeds are given for every variety in table 1. In order to obtain an estimate of the variability for the methods of determination of the oil percentage, in the 3 differents parts of the seeds and also in the 3 groups of seeds, the coefficient of variability was calculate (table 2). It is showed that the variation in the seed and embryo is low and that in the seed-coat is very high. The analysis of variance, with regard to the difference among the 3 types of seeds (small, medium and large), among the 3 parts of the seed (whole seed, embryo and seed-coat) and residual error, is given in table 3. Only, the oil content of whole seeds among types of seeds was significant at the 5% level. The t test among the correspondent means is not significant for the difference between medium and large seeds is significant between both these types (medium and large) and small seeds. The fiducial limits in relation to the mean of the oil percentage in the 3 differents types of seed, show that there is one variety (n. 1013-2), which has a percentage of oil, in the medium type of seed, significantly at the 5% level (table 4), higher than the general mean. Since the distribution of the percentage of oil in the seedcoat is discontinuous, 5 groups were established (table 5). All the differences between groups are significant (table 6). For practical purposes, when we have to remove the seed coat, one should eliminate those varieties which loose at least 3% of oil by this procedure. There is a significant linear correlation at 5% level between the percentage of oil in the seed and in the embryo, of the smali and medium type of seeds (table 7), and also, when taking the 3 types together (lower part of table 7), one finds that the same is true. Also, the correlation between the percentages of oil in the embryo and in the seed-coat of the 3 types together is significant at 5% level. According to the results obtained in relation to the percentage in 28 varieties studied, it can be recommended, for breeding purposes, to work only with those varieties which belong to the medium and the large types of seeds.
Resumo:
This paper deals with the estimation of milk production by means of weekly, biweekly, bimonthly observations and also by method known as 6-5-8, where one observation is taken at the 6th week of lactation, another at 5th month and a third one at the 8th month. The data studied were obtained from 72 lactations of the Holstein Friesian breed of the "Escola Superior de Agricultura "Luiz de Queiroz" (Piracicaba), S. Paulo, Brazil), being 6 calvings on each month of year and also 12 first calvings, 12 second calvings, and so on, up to the sixth. The authors criticize the use of "maximum error" to be found in papers dealing with this subject, and also the use of mean deviation. The former is completely supersed and unadvisable and latter, although equivalent, to a certain extent, to the usual standard deviation, has only 87,6% of its efficiency, according to KENDALL (9, pp. 130-131, 10, pp. 6-7). The data obtained were compared with the actual production, obtained by daily control and the deviations observed were studied. Their means and standard deviations are given on the table IV. Inspite of BOX's recent results (11) showing that with equal numbers in all classes a certain inequality of varinces is not important, the autors separated the methods, before carrying out the analysis of variance, thus avoiding to put together methods with too different standard deviations. We compared the three first methods, to begin with (Table VI). Then we carried out the analysis with the four first methods. (Table VII). Finally we compared the two last methods. (Table VIII). These analysis of variance compare the arithmetic means of the deviations by the methods studied, and this is equivalent to compare their biases. So we conclude tht season of calving and order of calving do not effect the biases, and the methods themselves do not differ from this view point, with the exception of method 6-5-8. Another method of attack, maybe preferrable, would be to compare the estimates of the biases with their expected mean under the null hypothesis (zero) by the t-test. We have: 1) Weekley control: t = x - 0/c(x) = 8,59 - 0/ = 1,56 2) Biweekly control: t = 11,20 - 0/6,21= 1,80 3) Monthly control: t = 7,17 - 0/9,48 = 0,76 4) Bimonthly control: t = - 4,66 - 0/17,56 = -0,26 5) Method 6-5-8 t = 144,89 - 0/22,41 = 6,46*** We denote above by three asterisks, significance the 0,1% level of probability. In this way we should conclude that the weekly, biweekly, monthly and bimonthly methods of control may be assumed to be unbiased. The 6-5-8 method is proved to be positively biased, and here the bias equals 5,9% of the mean milk production. The precision of the methods studied may be judged by their standard deviations, or by intervals covering, with a certain probability (95% for example), the deviation x corresponding to an estimate obtained by cne of the methods studied. Since the difference x - x, where x is the mean of the 72 deviations obtained for each method, has a t distribution with mean zero and estimate of standard deviation. s(x - x) = √1+ 1/72 . s = 1.007. s , and the limit of t for the 5% probability, level with 71 degrees of freedom is 1.99, then the interval to be considered is given by x ± 1.99 x 1.007 s = x ± 2.00. s The intervals thus calculated are given on the table IX.
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2013
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2013
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2013
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2014
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2015
Resumo:
Mangoes, cv. Imperial, were exposed, in post harvest, to the following methods of ripening: 1) sawdust burning; 2) alcohol vaporization; 3) calcium carbide (acetylene), 4) vapour of ethylene; and, 5) immersion in ethefon. All methods resulted in acceleration of ripening, when compared to controls. Calcium carbide, ethelene and ethefon were the best, methods. Alcohol vaporization also showed good results sawdust burning method showing low efficiency.
Resumo:
The present work deal t wi th an experiment under field conditions and a laboratory test of soil incubation the objectives were as follows: a. to study effects on soybean grain product ion and leaf composition of increasing doses of potassium chloride applied into the soil through two methods of distribution; b. to observe chemical modifications in the soils incubated with increasing doses of potassium chloride; and, c. to correlate field effects with chemical alterations observed in the incubation test, The field experiment was carried out in a Red Latosol (Haplustox) with soybean cultivar UFV - 1. Potassium chloride was distributed through two methods: banded (5 cm below and 5 cm aside of the seed line) and broadcasted and plowed-down. Doses used were: 0; 50; 100 and 200 kg/ha of K2O. Foliar samples were taken at flowering stage. Incubation test were made in plastic bags with 2 kg of air dried fine soil, taken from the arable layer of the field experiment, with the following doses of KC1 p,a. : 0; 50; 100; 200; 400; 800; 1,600; 3.200; 6,400 and 12,800 kg/ha of K(2)0. In the conditions observed during the present work, results allowed the following conclusions: A response by soybean grain production for doses of potassium chloride, applied in both ways, banded or broadcasted, was not observed. Leaf analysis did not show treatment influence over the leaf contents for N, P, K, Ca, Mg, and CI, Potassium chloride salinity effects in both methods of distribution for all the tested closes were not observed.
Resumo:
This paper dis cusses the fitting of a Cobb-Doug las response curve Yi = αXβi, with additive error, Yi = αXβi + e i, instead of the usual multiplicative error Yi = αXβi (1 + e i). The estimation of the parameters A and B is discussed. An example is given with use of both types of error.
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2015
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Univ., Dissertation, 2015