910 resultados para Prediction method


Relevância:

20.00% 20.00%

Publicador:

Resumo:

O cultivo do café é uma das atividades do agronegócio de maior importância socioeconômica dentre as diferentes atividades ligadas ao comércio agrícola mundial. Uma das maiores contribuições da genética quantitativa para o melhoramento genético é a possibilidade de prever ganhos genéticos. Quando diferentes critérios de seleção são considerados, a predição de ganhos referentes a cada critério tem grande importância, pois indica os melhoristas sobre como utilizar o material genético disponível, visando obter o máximo de ganhos possível para as características de interesse. O presente trabalho foi instalado em julho de 2004, na Fazenda Experimental de Bananal do Norte, conduzida pelo Incaper, no distrito de Pacotuba, município de Cachoeiro de Itapemirim, região Sul do Estado, com o objetivo de selecionar as melhores plantas entre e dentro de progênies de meios- irmãos de Coffea canephora, por meio de diferentes critérios de seleção. Foram realizadas análises de variância individuais e conjuntas para 26 progênies de meios- irmãos Coffea canephora. O delineamento experimental utilizado foi em blocos ao acaso com quatro testemunhas adicionais com quatro repetições e parcela composta por cinco plantas, com o espaçamento de 3,0 m x 1,2 m. Neste trabalho, considerou-se os dados das últimas cinco colheitas. As características mensuradas foram: florescimento, maturação, tamanho do grão, peso, porte, vigor, ferrugem, mancha cercóspora, seca de ponteiros, escala geral, porcentagem de frutos boia e bicho mineiro. Todas as análises estatísticas foram realizadas com o aplicativo computacional em genética e estatística (GENES). Foram estimados os ganhos de seleção em função da porcentagem de seleção de 20% entre e dentro, sendo as mesmas mantidas para todas as características. Todas as características foram submetidas a seleção no sentido positivo, exceto para florescimento, porte, ferrugem, mancha cercóspora, seca de ponteiros, porcentagem de frutos boia e bicho mineiro, para obter decréscimo em suas médias originais. Os critérios de seleção estudados foram: seleção convencional entre e dentro das famílias, índice de seleção combinada, seleção massal e seleção massal estratificada. Esta dissertação é composta por dois capítulos, em que foram realizadas análises biométricas, como a obtenção de estimativas de parâmetros genéticos. Na maioria das características estudadas, verificaram-se diferenças significativas (P<0,05) para genótipos que, associados aos coeficientes de variação genotípicos e também ao coeficiente de determinação genotípico e à relação CVg/CVe, indicam a existência de variabilidade genética nos materiais genéticos para a maioria das características e condições favoráveis para obtenção de ganhos genéticos pela seleção. Essas características também foram correlacionadas. Os dados foram submetidos às análises de variância e multivariada, aplicando-se a técnica de agrupamento e UPGMA, teste de médias e estudo de correlações. Na técnica de agrupamento, foi utilizada a distância generalizada de Mahalanobis como medida de dissimilaridade, e na delimitação dos grupos, o método de Tocher. Foi encontrada diversidade genética para as características associadas à qualidade fisiológica, mobilização de reserva das sementes, dimensões e biomassa das plântulas. Quatro grupos de genótipos puderam ser formados. Peso de massa seca de sementes, redução de reserva de sementes e peso de massa seca de plântulas estão positivamente correlacionados entre si, enquanto a redução de reserva das sementes e a eficiência na conversão dessas reservas em plântulas estão negativamente correlacionadas. De acordo com os resultados obtidos, verificou-se que todas as características apresentaram níveis diferenciados de variabilidade genética e os critérios de seleção utilizados mostraram-se eficientes para o melhoramento, no qual o índice de seleção combinada é o critério de seleção que apresentou os melhores resultados em termos de ganhos, sendo indicado como critério mais apropriado para o melhoramento genético da população estudada. Nos estudos de correlações, em 70% dos casos, a correlação fenotípica foi superior à genotípica, mostrando maior influência dos fatores ambientais em relação aos genotípicos e condições propícias ao melhoramento dos diferentes caracteres. No estudo de divergência genética, observou-se que pelo agrupamento de genótipos, pela técnica de Tocher, indicou que os genótipos foram distribuídos em três grupos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue engineering applications rely on scaffolds that during its service life, either for in-vivo or in vitro applications, are under mechanical solicitations. The variation of the mechanical condition of the scaffold is strongly relevant for cell culture and has been scarcely addressed. Fatigue life cycle of poly-ε-caprolactone, PCL, scaffolds with and without fibrin as filler of the pore structure were characterized both dry and immersed in liquid water. It is observed that the there is a strong increase from 100 to 500 in the number of loading cycles before collapse in the samples tested in immersed conditions due to the more uniform stress distributions within the samples, the fibrin loading playing a minor role in the mechanical performance of the scaffolds

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the development of motor vehicles, crash safety (e.g. occupant protection, pedestrian protection, low speed damageability), is one of the most important attributes. In order to be able to fulfill the increased requirements in the framework of shorter cycle times and rising pressure to reduce costs, car manufacturers keep intensifying the use of virtual development tools such as those in the domain of Computer Aided Engineering (CAE). For crash simulations, the explicit finite element method (FEM) is applied. The accuracy of the simulation process is highly dependent on the accuracy of the simulation model, including the midplane mesh. One of the roughest approximations typically made is the actual part thickness which, in reality, can vary locally. However, almost always a constant thickness value is defined throughout the entire part due to complexity reasons. On the other hand, for precise fracture analysis within FEM, the correct thickness consideration is one key enabler. Thus, availability of per element thickness information, which does not exist explicitly in the FEM model, can significantly contribute to an improved crash simulation quality, especially regarding fracture prediction. Even though the thickness is not explicitly available from the FEM model, it can be inferred from the original CAD geometric model through geometric calculations. This paper proposes and compares two thickness estimation algorithms based on ray tracing and nearest neighbour 3D range searches. A systematic quantitative analysis of the accuracy of both algorithms is presented, as well as a thorough identification of particular geometric arrangements under which their accuracy can be compared. These results enable the identification of each technique’s weaknesses and hint towards a new, integrated, approach to the problem that linearly combines the estimates produced by each algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the dispersion of vapor-grown carbon nanofibers (VGCNF) on the electrical properties of VGCNF/ Epoxy composites has been studied. A homogenous dispersion of the VGCNF does not imply better electrical properties. In fact, it is demonstrated that the most simple of the tested dispersion methods results in higher conductivity, since the presence of well-distributed nanofiber clusters appears to be a key factor for increasing composite conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to select superior hybrids for the concentration of favorable alleles for resistance to papaya black spot, powdery mildew and phoma spot, 67 hybrids were evaluated in two seasons, in 2007, in a randomized block design with two replications. Genetic gains were estimated from the selection indices of Smith & Hazel, Pesek & Baker, Williams, Mulamba & Mock, with selection intensity of 22.39%, corresponding to 15 hybrids. The index of Mulamba & Mock showed gains more suitable for the five traits assessed when it was used the criterion of economic weight tentatively assigned. Together, severity of black spot on leaves and on fruits, characteristics considered most relevant to the selection of resistant materials, expressed percentage gain of -44.15%. In addition, there were gains for other characteristics, with negative predicted selective percentage gain. The results showed that the index of Mulamba & Mock is the most efficient procedure for simultaneous selection of papaya hybrid resistant to black spot, powdery mildew and phoma spot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a method for estimating local thickness distribution in nite element models, applied to injection molded and cast engineering parts. This method features considerable improved performance compared to two previously proposed approaches, and has been validated against thickness measured by di erent human operators. We also demonstrate that the use of this method for assigning a distribution of local thickness in FEM crash simulations results in a much more accurate prediction of the real part performance, thus increasing the bene ts of computer simulations in engineering design by enabling zero-prototyping and thus reducing product development costs. The simulation results have been compared to experimental tests, evidencing the advantage of the proposed method. Thus, the proposed approach to consider local thickness distribution in FEM crash simulations has high potential on the product development process of complex and highly demanding injection molded and casted parts and is currently being used by Ford Motor Company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to evaluate the efficiency of multiple centroids to study the adaptability of alfalfa genotypes (Medicago sativa L.). In this method, the genotypes are compared with ideotypes defined by the bissegmented regression model, according to the researcher's interest. Thus, genotype classification is carried out as determined by the objective of the researcher and the proposed recommendation strategy. Despite the great potential of the method, it needs to be evaluated under the biological context (with real data). In this context, we used data on the evaluation of dry matter production of 92 alfalfa cultivars, with 20 cuttings, from an experiment in randomized blocks with two repetitions carried out from November 2004 to June 2006. The multiple centroid method proved efficient for classifying alfalfa genotypes. Moreover, it showed no unambiguous indications and provided that ideotypes were defined according to the researcher's interest, facilitating data interpretation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the current frontiers in the clinical management of Pectus Excavatum (PE) patients is the prediction of the surgical outcome prior to the intervention. This can be done through computerized simulation of the Nuss procedure, which requires an anatomically correct representation of the costal cartilage. To this end, we take advantage of the costal cartilage tubular structure to detect it through multi-scale vesselness filtering. This information is then used in an interactive 2D initialization procedure which uses anatomical maximum intensity projections of 3D vesselness feature images to efficiently initialize the 3D segmentation process. We identify the cartilage tissue centerlines in these projected 2D images using a livewire approach. We finally refine the 3D cartilage surface through region-based sparse field level-sets. We have tested the proposed algorithm in 6 noncontrast CT datasets from PE patients. A good segmentation performance was found against reference manual contouring, with an average Dice coefficient of 0.75±0.04 and an average mean surface distance of 1.69±0.30mm. The proposed method requires roughly 1 minute for the interactive initialization step, which can positively contribute to an extended use of this tool in clinical practice, since current manual delineation of the costal cartilage can take up to an hour.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foi desenvolvido um método destinado a fazer a triagem rápida e o escalonamento da toxicidade geral exercida por xenobióticos tendo como modelo o Saccharomyces cerevisiae. Para padronizar as condições de experimentação foi estabelecida a relação entre a absorvência a 525 nm e o número de células em suspensão por mililitro de meio de cultura e calculadas uma curva padrão e respectiva equação definidora (Y=6,8219E-08X + 0,0327) Culturas de Saccharomyces cerevisiae em meio completo para leveduras (YPD - 1% de glucose 2%, de peptona 0,5% e extracto de levedura 1%) foram expostas a diferentes concentrações de nicotina e a inibição do crescimento avaliada.