926 resultados para Predator cues


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decision situations are often characterized by uncertainty: we do not know the values of the different options on all attributes and have to rely on information stored in our memory to decide. Several strategies have been proposed to describe how people make inferences based on knowledge used as cues. The present research shows how declarative memory of ACT-R models could be populated based on internet statistics. This will allow to simulate the performance of decision strategies operating on declarative knowledge based on occurrences and co-occurrences of objects and cues in the environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants are photoautotrophic sessile organisms that use environmental cues to optimize multiple facets of growth and development. A classic example is phototropism - in shoots this is typically positive, leading to growth towards the light, while roots frequently show negative phototropism triggering growth away from the light. Shoot phototropism optimizes light capture of leaves in low light environments and hence increases photosynthetic productivity. Phototropins are plasma-membrane-associated UV-A/blue-light activated kinases that trigger phototropic growth. Light perception liberates their protein kinase domain from the inhibitory action of the amino-terminal photosensory portion of the photoreceptor. Following a series of still poorly understood events, phototropin activation leads to the formation of a gradient of the growth hormone auxin across the photo-stimulated stem. The greater auxin concentration on the shaded compared with the lit side of the stem enables growth reorientation towards the light. In this Minireview, we briefly summarize the signaling steps starting from photoreceptor activation until the establishment of a lateral auxin gradient, ultimately leading to phototropic growth in shoots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guidepost cells present at and surrounding the midline provide guidance cues that orient the growing axons through commissures. Here we show that the transcription factor Nkx2.1 known to control the specification of GABAergic interneurons also regulates the differentiation of astroglia and polydendrocytes within the mouse anterior commissure (AC). Nkx2.1-positive glia were found to originate from three germinal regions of the ventral telencephalon. Nkx2.1-derived glia were observed in and around the AC region by E14.5. Thereafter, a selective cell ablation strategy showed a synergistic role of Nkx2.1-derived cells, both GABAergic interneurons and astroglia, towards the proper formation of the AC. Finally, our results reveal that the Nkx2.1-regulated cells mediate AC axon guidance through the expression of the repellent cue, Slit2. These results bring forth interesting insights about the spatial and temporal origin of midline telencephalic glia, and highlight the importance of neurons and astroglia towards the formation of midline commissures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research on face recognition and social judgment usually addresses the manipulation of facial features (eyes, nose, mouth, etc.). Using a procedure based on a Stroop-like task, Montepare and Opeyo (J Nonverbal Behav 26(1):43-59, 2002) established a hierarchy of the relative salience of cues based on facial attributes when differentiating faces. Using the same perceptual interference task, we established a hierarchy of facial features. Twenty-three participants (13 men and 10 women) volunteered for the experiment to compare pairs of frontal faces. The participants had to judge if the eyes, nose, mouth and chin in the pair of images were the same or different. The factors manipulated were the target-distractive factor (4 face components 9 3 distractive factors), interference (absent vs. present) and correct answer (the same vs. different). The analysis of reaction times and errors showed that the eyes and mouth were processed before the chin and nose, thus highlighting the critical importance of the eyes and mouth, as shown by previous research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: How do listeners manage to recognize words in an unfamiliar language? The physical continuity of the signal, in which real silent pauses between words are lacking, makes it a difficult task. However, there are multiple cues that can be exploited to localize word boundaries and to segment the acoustic signal. In the present study, word-stress was manipulated with statistical information and placed in different syllables within trisyllabic nonsense words to explore the result of the combination of the cues in an online word segmentation task. Results: The behavioral results showed that words were segmented better when stress was placed on the final syllables than when it was placed on the middle or first syllable. The electrophysiological results showed an increase in the amplitude of the P2 component, which seemed to be sensitive to word-stress and its location within words. Conclusion: The results demonstrated that listeners can integrate specific prosodic and distributional cues when segmenting speech. An ERP component related to word-stress cues was identified: stressed syllables elicited larger amplitudes in the P2 component than unstressed ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The identification and characterization of long noncoding RNA in a variety of tissues represent major achievements that contribute to our understanding of the molecular mechanisms controlling gene expression. In particular, long noncoding RNA play crucial roles in the epigenetic regulation of the adaptive response to environmental cues via their capacity to target chromatin modifiers to specific locus. In addition, these transcripts have been implicated in controlling splicing, translation and degradation of messenger RNA. Long noncoding RNA have also been shown to act as decoy molecules for microRNA. In the heart, a few long noncoding RNA have been demonstrated to regulate cardiac commitment and differentiation during development. Furthermore, recent findings suggest their involvement as regulators of the pathophysiological response to injury in the adult heart. Their high cellular specificity makes them attractive target molecules for innovative therapies and ideal biomarkers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of diet on barn owl (Tyto alba) breeding biology has been well studied in the temperate regions but not in the more arid Middle East. In temperate regions, barn owls are darker colored and mainly prey upon Cricetidae rodents, whereas in arid regions, they are lighter colored and prey to a larger degree upon Muridae rodents. In this study we analyzed the diet and breeding success of 261 barn owl pairs nesting in Israel. The reproductive success of barn owls declined from March to August, and fledged more young when they consumed a larger proportion of social voles (Microtus socialis guentheri). Although the diet of the lighter colored barn owls in Israel comprises more Muridae than that of the darker morphs in temperate regions, in both regions the number of barn owl young increases with an increased proportion of voles in the diet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Mitogen activated protein kinases (MAPK) play an essential role in integrating extra-cellular signals and intra-cellular cues to allow cells to grow, adapt to stresses, or undergo apoptosis. Budding yeast serves as a powerful system to understand the fundamental regulatory mechanisms that allow these pathways to combine multiple signals and deliver an appropriate response. To fully comprehend the variability and dynamics of these signaling cascades, dynamic and quantitative single cell measurements are required. Microscopy is an ideal technique to obtain these data; however, novel assays have to be developed to measure the activity of these cascades. RESULTS: We have generated fluorescent biosensors that allow the real-time measurement of kinase activity at the single cell level. Here, synthetic MAPK substrates were engineered to undergo nuclear-to-cytoplasmic relocation upon phosphorylation of a nuclear localization sequence. Combination of fluorescence microscopy and automated image analysis allows the quantification of the dynamics of kinase activity in hundreds of single cells. A large heterogeneity in the dynamics of MAPK activity between individual cells was measured. The variability in the mating pathway can be accounted for by differences in cell cycle stage, while, in the cell wall integrity pathway, the response to cell wall stress is independent of cell cycle stage. CONCLUSIONS: These synthetic kinase activity relocation sensors allow the quantification of kinase activity in live single cells. The modularity of the architecture of these reporters will allow their application in many other signaling cascades. These measurements will allow to uncover new dynamic behaviour that previously could not be observed in population level measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We annually monitored the abundance and size structure of herbivorous sea urchin populations (Paracentrotus lividus and Arbacia lixula) inside and outside a marine reserve in the Northwestern Mediterranean on two distinct habitats (boulders and vertical walls) over a period of 20 years, with the aim of analyzing changes at different temporal scales in relation to biotic and abiotic drivers. P. lividus exhibited significant variability in density over time on boulder bottoms but not on vertical walls, and temporal trends were not significantly different between the protection levels. Differences in densities were caused primarily by variance in recruitment, which was less pronounced inside the MPA and was correlated with adult density, indicating density-dependent recruitment under high predation pressure, as well as some positive feedback mechanisms that may facilitate higher urchin abundances despite higher predator abundance. Populations within the reserve were less variable in abundance and did not exhibit the hyper-abundances observed outside the reserve, suggesting that predation effects maybe more subtle than simply lowering the numbers of urchins in reserves. A. lixula densities were an order of magnitude lower than P. lividus densities and varied within sites and over time on boulder bottoms but did not differ between protection levels. In December 2008, an exceptionally violent storm reduced sea urchin densities drastically (by 50% to 80%) on boulder substrates, resulting in the lowest values observed over the entire study period, which remained at that level for at least two years (up to the present). Our results also showed great variability in the biological and physical processes acting at different temporal scales. This study highlights the need for appropriate temporal scales for studies to fully understand ecosystem functioning, the concepts of which are fundamental to successful conservation and management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toll-like receptors are historically linked to immunity across animal phyla, but accumulating evidence suggests they play additional roles in neuronal networks and in cell-cell interactions. Ward and colleagues now identify Toll-6 and Toll-7 as instructive guidance cues during Drosophila olfactory development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Radial maze tasks have been used to assess optimal foraging and spatial abilities in rodents. The spatial performance was based on a capacity to rely on a configuration of local and distant cues. We adapted maze procedures assessing the relative weight of local cues and distant landmarks for arm choice in humans. NEW METHOD: The procedure allowed testing memory of places in four experimental setups: a fingertip texture-groove maze, a tactile screen maze, a virtual radial maze and a walking size maze. During training, the four reinforced positions remained fixed relative to local and distal cues. During subsequent conflict trials, these frameworks were made conflictive in the prediction of reward locations. RESULTS: Three experiments showed that the relative weight of local and distal relational cues is affected by different factors such as cues' nature, visual access to the environment, real vs. virtual environment, and gender. A fourth experiment illustrated how a walking maze can be used with people suffering intellectual disability. COMPARISON WITH EXISTING METHODS: In our procedure, long-term (reference) and short-term (working) memory can be assessed. It is the first radial task adapted to human that enables dissociating local and distal cues, to provides an indication as to their relative salience. Our mazes are moveable and easily used in limited spaces. Tasks are performed with realistic and spontaneous though controlled exploratory movements. CONCLUSION: Our tasks enabled highlighting the use of different strategies. In a clinical perspective, considering the use of compensatory strategies should orient towards adapted behavioural rehabilitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mammalian circadian timing system consists of a central pacemaker in the brain's suprachiasmatic nucleus (SCN) and subsidiary oscillators in nearly all body cells. The SCN clock, which is adjusted to geophysical time by the photoperiod, synchronizes peripheral clocks through a wide variety of systemic cues. The latter include signals depending on feeding cycles, glucocorticoid hormones, rhythmic blood-borne signals eliciting daily changes in actin dynamics and serum response factor (SRF) activity, and sensors of body temperature rhythms, such as heat shock transcription factors and the cold-inducible RNA-binding protein CIRP. To study these systemic signalling pathways, we designed and engineered a novel, highly photosensitive apparatus, dubbed RT-Biolumicorder. This device enables us to record circadian luciferase reporter gene expression in the liver and other organs of freely moving mice over months in real time. Owing to the multitude of systemic signalling pathway involved in the phase resetting of peripheral clocks the disruption of any particular one has only minor effects on the steady state phase of circadian gene expression in organs such as the liver. Nonetheless, the implication of specific pathways in the synchronization of clock gene expression can readily be assessed by monitoring the phase-shifting kinetics using the RT-Biolumicorder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical perception is considered one of the first senses used as a communication system between living organisms. Such communication is based on the emission of signals between a sender and a receiver; if the communication is chemical, these signals are called pheromones. These signals have evolved via natural selection through a mechanism known as ritualization, which converts cues (which are not adapted to communication and which the receiver picks up regardless of the interests of the sender) into signals (information that the sender transmits as an adaptative response to its previously developed perception of the receiver). When communication has evolved between actors (sender and receiver) with common interests, the honesty of the signal is taken for granted, since both want the same thing (i.e., there is no reason to deceive). If the actors have conflicting interests, however, then the possibility of deception seeps into the possible array of adaptations. This can be observed in the case of communicative mimicry. However, in other situations natural selection imposes conditions that screen the possible signals, allowing only those that meet the requirement of honesty to stabilize. These include indices and added-cost signals. The emission of pheromones plays a variety of roles in the life processes of living beings. It facilitates encounters between individuals of the same species and is heavily involved in the mechanisms of recognition of relatives. It also fosters behaviours such as altruism (cooperation between individuals that share a percentage of their genetic inheritance). In many species, including humans, chemical communication works behind the scenes to guide the choice of a sexual partner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Directed cell migration and axonal guidance are essential steps in neural development. Both processes are controlled by specific guidance cues that activate the signaling cascades that ultimately control cytoskeletal dynamics. Another essential step in migration and axonal guidance is the regulation of plasmalemma turnover and exocytosis in leading edges and growth cones. However, the cross talk mechanisms linking guidance receptors and membrane exocytosis are not understood. Netrin-1 is a chemoattractive cue required for the formation of commissural pathways. Here, we show that the Netrin-1 receptor deleted in colorectal cancer (DCC) forms a protein complex with the t-SNARE (target SNARE) protein Syntaxin-1 (Sytx1). This interaction is Netrin-1 dependent both in vitro and in vivo, and requires specific Sytx1 and DCC domains. Blockade of Sytx1 function by using botulinum toxins abolished Netrin-1-dependent chemoattraction of axons in mouse neuronal cultures. Similar loss-of-function experiments in the chicken spinal cord in vivo using dominant-negative Sytx1 constructs or RNAi led to defects in commissural axon pathfinding reminiscent to those described in Netrin-1 and DCC loss-of-function models. We also show that Netrin-1 elicits exocytosis at growth cones in a Sytx1-dependent manner. Moreover, we demonstrate that the Sytx1/DCC complex associates with the v-SNARE (vesicle SNARE) tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) and that knockdown of TI-VAMP in the commissural pathway in the spinal cord results in aberrant axonal guidance phenotypes. Our data provide evidence of a new signaling mechanism that couples chemotropic Netrin-1/DCC axonal guidance and Sytx1/TI-VAMP SNARE proteins regulating membrane turnover and exocytosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucose homeostasis as well as homeostatic and hedonic control of feeding is regulated by hormonal, neuronal, and nutrient-related cues. Glucose, besides its role as a source of metabolic energy, is an important signal controlling hormone secretion and neuronal activity, hence contributing to whole-body metabolic integration in coordination with feeding control. Brain glucose sensing plays a key, but insufficiently explored, role in these metabolic and behavioral controls, which when deregulated may contribute to the development of obesity and diabetes. The recent introduction of innovative transgenic, pharmacogenetic, and optogenetic techniques allows unprecedented analysis of the complexity of central glucose sensing at the molecular, cellular, and neuronal circuit levels, which will lead to a new understanding of the pathogenesis of metabolic diseases.