953 resultados para Power system reliability


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the energy management of a small power system, the scheduling of the generation units is a crucial problem for which adequate methodologies can maximize the performance of the energy supply. This paper proposes an innovative methodology for distributed energy resources management. The optimal operation of distributed generation, demand response and storage resources is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The paper deals with a vision for the grids of the future, focusing on conceptual and operational aspects of electrical grids characterized by an intensive penetration of DG, in the scope of competitive environments and using artificial intelligence methodologies to attain the envisaged goals. These concepts are implemented in a computational framework which includes both grid and market simulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The smart grid concept is a key issue in the future power systems, namely at the distribution level, with deep concerns in the operation and planning of these systems. Several advantages and benefits for both technical and economic operation of the power system and of the electricity markets are recognized. The increasing integration of demand response and distributed generation resources, all of them mostly with small scale distributed characteristics, leads to the need of aggregating entities such as Virtual Power Players. The operation business models become more complex in the context of smart grid operation. Computational intelligence methods can be used to give a suitable solution for the resources scheduling problem considering the time constraints. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The optimal schedule minimizes the operation costs and it is obtained using a particle swarm optimization approach, which is compared with a deterministic approach used as reference methodology. The proposed method is applied to a 33-bus distribution network with 32 medium voltage consumers and 66 distributed generation units.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Load forecasting has gradually becoming a major field of research in electricity industry. Therefore, Load forecasting is extremely important for the electric sector under deregulated environment as it provides a useful support to the power system management. Accurate power load forecasting models are required to the operation and planning of a utility company, and they have received increasing attention from researches of this field study. Many mathematical methods have been developed for load forecasting. This work aims to develop and implement a load forecasting method for short-term load forecasting (STLF), based on Holt-Winters exponential smoothing and an artificial neural network (ANN). One of the main contributions of this paper is the application of Holt-Winters exponential smoothing approach to the forecasting problem and, as an evaluation of the past forecasting work, data mining techniques are also applied to short-term Load forecasting. Both ANN and Holt-Winters exponential smoothing approaches are compared and evaluated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The recent changes concerning the consumers’ active participation in the efficient management of load devices for one’s own interest and for the interest of the network operator, namely in the context of demand response, leads to the need for improved algorithms and tools. A continuous consumption optimization algorithm has been improved in order to better manage the shifted demand. It has been done in a simulation and user-interaction tool capable of being integrated in a multi-agent smart grid simulator already developed, and also capable of integrating several optimization algorithms to manage real and simulated loads. The case study of this paper enhances the advantages of the proposed algorithm and the benefits of using the developed simulation and user interaction tool.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increase of electricity demand in Brazil, the lack of the next major hydroelectric reservoirs implementation, and the growth of environmental concerns lead utilities to seek an improved system planning to meet these energy needs. The great diversity of economic, social, climatic, and cultural conditions in the country have been causing a more difficult planning of the power system. The work presented in this paper concerns the development of an algorithm that aims studying the influence of the issues mentioned in load curves. Focus is given to residential consumers. The consumption device with highest influence in the load curve is also identified. The methodology developed gains increasing importance in the system planning and operation, namely in the smart grids context.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most of distributed generation and smart grid research works are dedicated to network operation parameters studies, reliability, etc. However, many of these works normally uses traditional test systems, for instance, IEEE test systems. This paper proposes voltage magnitude and reliability studies in presence of fault conditions, considering realistic conditions found in countries like Brazil. The methodology considers a hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models and a remedial action algorithm which is based on optimal power flow. To illustrate the application of the proposed method, the paper includes a case study that considers a real 12-bus sub-transmission network.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The recent changes on power systems paradigm requires the active participation of small and medium players in energy management. With an electricity price fluctuation these players must manage the consumption. Lowering costs and ensuring adequate user comfort levels. Demand response can improve the power system management and bring benefits for the small and medium players. The work presented in this paper, which is developed aiming the smart grid context, can also be used in the current power system paradigm. The proposed system is the combination of several fields of research, namely multi-agent systems and artificial neural networks. This system is physically implemented in our laboratories and it is used daily by researchers. The physical implementation gives the system an improvement in the proof of concept, distancing itself from the conventional systems. This paper presents a case study illustrating the simulation of real-time pricing in a laboratory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Os combustíveis fósseis, como o carvão, o petróleo e o gás, constituem fontes de energia que em breve se esgotarão e que são demasiado caras para serem desperdiçadas pelas centrais elétricas na produção de electricidade. Para além desse facto, existem outros argumentos (sobretudo económicos) que inviabilizam a utilização destas fontes de energia em algumas regiões, abrindo caminho a fontes de energia alternativas (e.g. solar, eólica, biomassa, mini-hídricas, geotérmicas, etc) e preferencialmente com contornos locais. No caso particular de Moçambique, tem-se verificado um interesse crescente por parte do governo e de várias ONGs na promoção do uso de energias alternativas para as zonas onde a energia convencional não chega e não chegará, devido aos custos muito elevados que esse processo acarretaria. Esta dissertação apresenta um estudo aprofundado do dimensionamento dum sistema híbrido de geração de energia elétrica envolvendo gerador FV e grupo eletrogéneo de emergência para a Escola Rural da Nangade, situada no Distrito de Nangade, na Província do Cabo Delgado. São também descritos os diversos componentes e as tecnologias associadas a um sistema deste género, com a inclusão de sistemas inteligentes de controlo de energia com a utilização de inversores bidireccionais (inversores de bateria e carregadores) para sistemas isolados. Os resultados são apresentados de forma a facilitar a aplicação e montagem deste tipo de sistemas in loco. Espera-se que esta dissertação possa servir de base no futuro próximo, para a implementação deste tipo de sistemas para permitir a melhoria da qualidade de ensino através de melhores infraestruturas, democratizando desta forma o acesso à educação para as crianças das zonas rurais das várias províncias de Moçambique. Como as energias renováveis são parte integrante do Sistema Elétrico Nacional, apresenta-se resumidamente, no anexo 17, o “Plano de Desenvolvimento na Área de Energia de Moçambique”.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

On average approximately 13% of the water that is withdrawn by Canadian municipal water suppliers is lost before it reaches final users. This is an important topic for several reasons: water losses cost money, losses force water agencies to draw more water from lakes and streams thereby putting more stress on aquatic ecosystems, leaks reduce system reliability, leaks may contribute to future pipe failures, and leaks may allow contaminants to enter water systems thereby reducing water quality and threatening the health of water users. Some benefits of leak detection fall outside water agencies’ accounting purview (e.g. reduced health risks to households connected to public water supply systems) and, as a result, may not be considered adequately in water agency decision-making. Because of the regulatory environment in which Canadian water agencies operate, some of these benefits-especially those external to the agency or those that may accrue to the agency in future time periods- may not be fully counted when agencies decide on leak detection efforts. Our analysis suggests potential reforms to promote increased efforts for leak detection: adoption of a Canada-wide goal of universal water metering; development of full-cost accounting and, pricing for water supplies; and co-operation amongst the provinces to promulgate standards for leak detection efforts and provide incentives to promote improved efficiency and rational investment decision-making.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Unit Commitment Problem (UCP) in power system refers to the problem of determining the on/ off status of generating units that minimize the operating cost during a given time horizon. Since various system and generation constraints are to be satisfied while finding the optimum schedule, UCP turns to be a constrained optimization problem in power system scheduling. Numerical solutions developed are limited for small systems and heuristic methodologies find difficulty in handling stochastic cost functions associated with practical systems. This paper models Unit Commitment as a multi stage decision making task and an efficient Reinforcement Learning solution is formulated considering minimum up time /down time constraints. The correctness and efficiency of the developed solutions are verified for standard test systems

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Almost all the electricity currently produced in the UK is generated as part of a centralised power system designed around large fossil fuel or nuclear power stations. This power system is robust and reliable but the efficiency of power generation is low, resulting in large quantities of waste heat. The principal aim of this paper is to investigate an alternative concept: the energy production by small scale generators in close proximity to the energy users, integrated into microgrids. Microgrids—de-centralised electricity generation combined with on-site production of heat—bear the promise of substantial environmental benefits, brought about by a higher energy efficiency and by facilitating the integration of renewable sources such as photovoltaic arrays or wind turbines. By virtue of good match between generation and load, microgrids have a low impact on the electricity network, despite a potentially significant level of generation by intermittent energy sources. The paper discusses the technical and economic issues associated with this novel concept, giving an overview of the generator technologies, the current regulatory framework in the UK, and the barriers that have to be overcome if microgrids are to make a major contribution to the UK energy supply. The focus of this study is a microgrid of domestic users powered by small Combined Heat and Power generators and photovoltaics. Focusing on the energy balance between the generation and load, it is found that the optimum combination of the generators in the microgrid- consisting of around 1.4 kWp PV array per household and 45% household ownership of micro-CHP generators- will maintain energy balance on a yearly basis if supplemented by energy storage of 2.7 kWh per household. We find that there is no fundamental technological reason why microgrids cannot contribute an appreciable part of the UK energy demand. Indeed, an estimate of cost indicates that the microgrids considered in this study would supply electricity at a cost comparable with the present electricity supply if the current support mechanisms for photovoltaics were maintained. Combining photovoltaics and micro-CHP and a small battery requirement gives a microgrid that is independent of the national electricity network. In the short term, this has particular benefits for remote communities but more wide-ranging possibilities open up in the medium to long term. Microgrids could meet the need to replace current generation nuclear and coal fired power stations, greatly reducing the demand on the transmission and distribution network.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

he perspective European Supergrid would consist of an integrated power system network, where electricity demands from one country could be met by generation from another country. This paper makes use of a bi-linear fixed-effects model to analyse the determinants for trading electricity across borders among 34 countries connected by the European Supergrid. The key question that this paper aims to address is the extent to which the privatisation of European electricity markets has brought about higher cross-border trade of electricity. The analysis makes use of distance, price ratios, gate closure times, size of peaks and aggregate demand as standard determinants. Controlling for other standard determinants, it is concluded that privatisation in most cases led to higher power exchange and that the benefits are more significant where privatisation measures have been in place for a longer period.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wind generation's contribution to supporting peak electricity demand is one of the key questions in wind integration studies. Differently from conventional units, the available outputs of different wind farms cannot be approximated as being statistically independent, and hence near-zero wind output is possible across an entire power system. This paper will review the risk model structures currently used to assess wind's capacity value, along with discussion of the resulting data requirements. A central theme is the benefits from performing statistical estimation of the joint distribution for demand and available wind capacity, focusing attention on uncertainties due to limited histories of wind and demand data; examination of Great Britain data from the last 25 years shows that the data requirements are greater than generally thought. A discussion is therefore presented into how analysis of the types of weather system which have historically driven extreme electricity demands can help to deliver robust insights into wind's contribution to supporting demand, even in the face of such data limitations. The role of the form of the probability distribution for available conventional capacity in driving wind capacity credit results is also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the two-level network design problem with intermediate facilities. This problem consists of designing a minimum cost network respecting some requirements, usually described in terms of the network topology or in terms of a desired flow of commodities between source and destination vertices. Each selected link must receive one of two types of edge facilities and the connection of different edge facilities requires a costly and capacitated vertex facility. We propose a hybrid decomposition approach which heuristically obtains tentative solutions for the vertex facilities number and location and use these solutions to limit the computational burden of a branch-and-cut algorithm. We test our method on instances of the power system secondary distribution network design problem. The results show that the method is efficient both in terms of solution quality and computational times. (C) 2010 Elsevier Ltd. All rights reserved.