994 resultados para Posteroanterior motion test
Resumo:
Introduction: Difficult tracheal intubation remains a constant and significant source of morbidity and mortality in anaesthetic practice. Insufficient airway assessment in the preoperative period continues to be a major cause of unanticipated difficult intubation. Although many risk factors have already been identified, preoperative airway evaluation is not always regarded as a standard procedure and the respective weight of each risk factor remains unclear. Moreover the predictive scores available are not sensitive, moderately specific and often operator-dependant. In order to improve the preoperative detection of patients at risk for difficult intubation, we developed a system for automated and objective evaluation of morphologic criteria of the face and neck using video recordings and advanced techniques borrowed from face recognition. Method and results: Frontal video sequences were recorded in 5 healthy volunteers. During the video recording, subjects were requested to perform maximal flexion-extension of the neck and to open wide the mouth with tongue pulled out. A robust and real-time face tracking system was then applied, allowing to automatically identify and map a grid of 55 control points on the face, which were tracked during head motion. These points located important features of the face, such as the eyebrows, the nose, the contours of the eyes and mouth, and the external contours, including the chin. Moreover, based on this face tracking, the orientation of the head could also be estimated at each frame of the video sequence. Thus, we could infer for each frame the pitch angle of the head pose (related to the vertical rotation of the head) and obtain the degree of head extension. Morphological criteria used in the most frequent cited predictive scores were also extracted, such as mouth opening, degree of visibility of the uvula or thyreo-mental distance. Discussion and conclusion: Preliminary results suggest the high feasibility of the technique. The next step will be the application of the same automated and objective evaluation to patients who will undergo tracheal intubation. The difficulties related to intubation will be then correlated to the biometric characteristics of the patients. The objective in mind is to analyze the biometrics data with artificial intelligence algorithms to build a highly sensitive and specific predictive test.
Resumo:
Several unit root tests in panel data have recently been proposed. The test developed by Harris and Tzavalis (1999 JoE) performs particularly well when the time dimension is moderate in relation to the cross-section dimension. However, in common with the traditional tests designed for the unidimensional case, it was found to perform poorly when there is a structural break in the time series under the alternative. Here we derive the asymptotic distribution of the test allowing for a shift in the mean, and assess the small sample performance. We apply this new test to show how the hypothesis of (perfect) hysteresis in Spanish unemployment is rejected in favour of the alternative of the natural unemployment rate, when the possibility of a change in the latter is considered.
Resumo:
Evidence exists that many natural facts are described better as a fractal. Although fractals are very useful for describing nature, it is also appropiate to review the concept of random fractal in finance. Due to the extraordinary importance of Brownian motion in physics, chemistry or biology, we will consider the generalization that supposes fractional Brownian motion introduced by Mandelbrot.The main goal of this work is to analyse the existence of long range dependence in instantaneous forward rates of different financial markets. Concretelly, we perform an empirical analysis on the Spanish, Mexican and U.S. interbanking interest rate. We work with three time series of daily data corresponding to 1 day operations from 28th March 1996 to 21st May 2002. From among all the existing tests on this matter we apply the methodology proposed in Taqqu, Teverovsky and Willinger (1995).
Resumo:
Selostus: Kasvatushäkin ympäristön vaikutus hopeakettujen käyttäytymiseen
Resumo:
Several unit root tests in panel data have recently been proposed. The test developed by Harris and Tzavalis (1999 JoE) performs particularly well when the time dimension is moderate in relation to the cross-section dimension. However, in common with the traditional tests designed for the unidimensional case, it was found to perform poorly when there is a structural break in the time series under the alternative. Here we derive the asymptotic distribution of the test allowing for a shift in the mean, and assess the small sample performance. We apply this new test to show how the hypothesis of (perfect) hysteresis in Spanish unemployment is rejected in favour of the alternative of the natural unemployment rate, when the possibility of a change in the latter is considered.
Resumo:
BACKGROUND: Because of denervation supersensitivity, a miotic pupil in a sympathetically-denervated eye dilates in response to a dilute or weak alpha-1-agonist drug. A reversal of anisocoria after topical apraclonidine is considered as a positive test result that diagnoses a unilateral Horner syndrome. HISTORY AND SIGNS: Two women aged 34 and 46 years with a cocaine-confirmed oculosympathetic defect (Horner syndrome) were tested with 1 % topical apraclonidine on separate days. THERAPY AND OUTCOME: In one patient, her miotic Horner pupil dilated marginally but not enough to reverse the baseline anisocoria. Additionally, the upper lid on the same side retracted. There was no discernable effect of apraclonidine on the normal, contralateral eye. In the second patient, there was no pupillary response to apraclonidine but there was resolution of her ptosis. CONCLUSIONS: Neither patient demonstrated a reversal of anisocoria, the current criterion for diagnosing a Horner syndrome using apraclonidine. Thus, these two patients with an established oculosympathetic defect were said to have a "negative test" for Horner syndrome. Yet both women showed subtle pupil and/or lid changes in response to apraclonidine that were consistent with sympathetic denervation supersensitivity. Reversal of anisocoria following topical apraclonidine does not occur in all patients with a unilateral oculosympathetic defect and more specific parameters for defining a positive test result might optimize apraclonidine's utility as a diagnostic test for Horner syndrome
Resumo:
A global existence and uniqueness result of the solution for multidimensional, time dependent, stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H> is proved. It is shown, also, that the solution has finite moments. The result is based on a deterministic existence and uniqueness theorem whose proof uses a contraction principle and a priori estimates.
Resumo:
In a weighted spatial network, as specified by an exchange matrix, the variances of the spatial values are inversely proportional to the size of the regions. Spatial values are no more exchangeable under independence, thus weakening the rationale for ordinary permutation and bootstrap tests of spatial autocorrelation. We propose an alternative permutation test for spatial autocorrelation, based upon exchangeable spatial modes, constructed as linear orthogonal combinations of spatial values. The coefficients obtain as eigenvectors of the standardised exchange matrix appearing in spectral clustering, and generalise to the weighted case the concept of spatial filtering for connectivity matrices. Also, two proposals aimed at transforming an acessibility matrix into a exchange matrix with with a priori fixed margins are presented. Two examples (inter-regional migratory flows and binary adjacency networks) illustrate the formalism, rooted in the theory of spectral decomposition for reversible Markov chains.
Resumo:
The Proctor test is time-consuming and requires sampling of several kilograms of soil. Proctor test parameters were predicted in Mollisols, Entisols and Vertisols of the Pampean region of Argentina under different management systems. They were estimated from a minimum number of readily available soil properties (soil texture, total organic C) and management (training data set; n = 73). The results were used to generate a soil compaction susceptibility model, which was subsequently validated using a second group of independent data (test data set; n = 24). Soil maximum bulk density was estimated as follows: Maximum bulk density (Mg m-3) = 1.4756 - 0.00599 total organic C (g kg-1) + 0.0000275 sand (g kg-1) + 0.0539 management. Management was equal to 0 for uncropped and untilled soils and 1 for conventionally tilled soils. The established models predicted the Proctor test parameters reasonably well, based on readily available soil properties. Tillage systems induced changes in the maximum bulk density regardless of total organic matter content or soil texture. The lower maximum apparent bulk density values under no-tillage require a revision of the relative compaction thresholds for different no-tillage crops.
Resumo:
To express the negative effects of soil compaction, some researchers use critical values for soil mechanical strength that severely impair plant growth. The aim of this study was to identify this critical compaction depth, to test the functionality of a new, portable penetrometer developed from a spring dynamometer, and compare it to an electronic penetrometer traditionally used in compaction studies of agricultural soils. Three soils with distinct texture were conventionally tilled using a disk plow, and cultivated with different plant species. The critical soil resistance defined to establish critical compaction depth was equal to 1.5 MPa. The results of the new equipment were similar to the electronic penetrometer, indicating its viability as a tool for assessing the soil physical conditions for plant growth.
Resumo:
Sophisticated magnetic resonance tagging techniques provide powerful tools for the non-invasive assessment of the local heartwall motion towards a deeper fundamental understanding of local heart function. For the extraction of motion data from the time series of magnetic resonance tagged images and for the visualization of the local heartwall motion a new image analysis procedure has been developed. New parameters have been derived which allows quantification of the motion patterns and are highly sensitive to any changes in these patterns. The new procedure has been applied for heart motion analysis in healthy volunteers and in patient collectives with different heart diseases. The achieved results are summarized and discussed.
Resumo:
We analyzed the initial adhesion and biofilm formation of Staphylococcus aureus (ATCC 29213) and S. epidermidis RP62A (ATCC 35984) on various bone grafts and bone graft substitutes under standardized in vitro conditions. In parallel, microcalorimetry was evaluated as a real-time microbiological assay in the investigation of biofilm formation and material science research. The materials beta-tricalcium phosphate (beta-TCP), processed human spongiosa (Tutoplast) and poly(methyl methacrylate) (PMMA) were investigated and compared with polyethylene (PE). Bacterial counts (log(10) cfu per sample) were highest on beta-TCP (S. aureus 7.67 +/- 0.17; S. epidermidis 8.14 +/- 0.05) while bacterial density (log(10) cfu per surface) was highest on PMMA (S. aureus 6.12 +/- 0.2, S. epidermidis 7.65 +/- 0.13). Detection time for S. aureus biofilms was shorter for the porous materials (beta-TCP and processed human spongiosa, p < 0.001) compared to the smooth materials (PMMA and PE), with no differences between beta-TCP and processed human spongiosa (p > 0.05) or PMMA and PE (p > 0.05). In contrast, for S. epidermidis biofilms the detection time was different (p < 0.001) between all materials except between processed human spongiosa and PE (p > 0.05). The quantitative analysis by quantitative culture after washing and sonication of the material demonstrated the importance of monitoring factors like specific surface or porosity of the test materials. Isothermal microcalorimetry proved to be a suitable tool for an accurate, non-invasive and real-time microbiological assay, allowing the detection of bacterial biomass without removing the biofilm from the surface.
Resumo:
Spiral chemical waves subjected to a spatiotemporal random excitability are experimentally and numerically investigated in relation to the light-sensitive Belousov-Zhabotinsky reaction. Brownian motion is identified and characterized by an effective diffusion coefficient which shows a rather complex dependence on the time and length scales of the noise relative to those of the spiral. A kinematically based model is proposed whose results are in good qualitative agreement with experiments and numerics.