905 resultados para Population balance model (PBM)
Resumo:
This study focuses on the mechanisms underlying water and heat transfer in upper soil layers, and their effects on soil physical prognostic variables and the individual components of the energy balance. The skill of the JULES (Joint UK Land Environment Simulator) land surface model (LSM) to simulate key soil variables, such as soil moisture content and surface temperature, and fluxes such as evaporation, is investigated. The Richards equation for soil water transfer, as used in most LSMs, was updated by incorporating isothermal and thermal water vapour transfer. The model was tested for three sites representative of semi-arid and temperate arid climates: the Jornada site (New Mexico, USA), Griffith site (Australia) and Audubon site (Arizona, USA). Water vapour flux was found to contribute significantly to the water and heat transfer in the upper soil layers. This was mainly due to isothermal vapour diffusion; thermal vapour flux also played a role at the Jornada site just after rainfall events. Inclusion of water vapour flux had an effect on the diurnal evolution of evaporation, soil moisture content and surface temperature. The incorporation of additional processes, such as water vapour flux among others, into LSMs may improve the coupling between the upper soil layers and the atmosphere, which in turn could increase the reliability of weather and climate predictions.
Resumo:
The Arctic is a region particularly susceptible to rapid climate change. General circulation models (GCMs) suggest a polar amplification of any global warming signal by a factor of about 1.5 due, in part, to sea ice feedbacks. The dramatic recent decline in multi-year sea ice cover lies outside the standard deviation of the CMIP3 ensemble GCM predictions. Sea ice acts as a barrier between cold air and warmer oceans during winter, as well as inhibiting evaporation from the ocean surface water during the summer. An ice free Arctic would likely have an altered hydrological cycle with more evaporation from the ocean surface leading to changes in precipitation distribution and amount. Using the U.K. Met Office Regional Climate Model (RCM), HadRM3, the atmospheric effects of the observed and projected reduction in Arctic sea ice are investigated. The RCM is driven by the atmospheric GCM HadAM3. Both models are forced with sea surface temperature and sea ice for the period 2061-2090 from the CMIP3 HadGEM1 experiments. Here we use an RCM at 50km resolution over the Arctic and 25km over Svalbard, which captures well the present-day pattern of precipitation and provides a detailed picture of the projected changes in the behaviour of the oceanic-atmosphere moisture fluxes and how they affect precipitation. These experiments show that the projected 21stCentury sea ice decline alone causes large impacts to the surface mass balance (SMB) on Svalbard. However Greenland’s SMB is not significantly affected by sea ice decline alone, but responds with a strongly negative shift in SMB when changes to SST are incorporated into the experiments. This is the first study to characterise the impact of changes in future sea ice to Arctic terrestrial cryosphere mass balance.
Resumo:
Motivation: Modelling the 3D structures of proteins can often be enhanced if more than one fold template is used during the modelling process. However, in many cases, this may also result in poorer model quality for a given target or alignment method. There is a need for modelling protocols that can both consistently and significantly improve 3D models and provide an indication of when models might not benefit from the use of multiple target-template alignments. Here, we investigate the use of both global and local model quality prediction scores produced by ModFOLDclust2, to improve the selection of target-template alignments for the construction of multiple-template models. Additionally, we evaluate clustering the resulting population of multi- and single-template models for the improvement of our IntFOLD-TS tertiary structure prediction method. Results: We find that using accurate local model quality scores to guide alignment selection is the most consistent way to significantly improve models for each of the sequence to structure alignment methods tested. In addition, using accurate global model quality for re-ranking alignments, prior to selection, further improves the majority of multi-template modelling methods tested. Furthermore, subsequent clustering of the resulting population of multiple-template models significantly improves the quality of selected models compared with the previous version of our tertiary structure prediction method, IntFOLD-TS.
Resumo:
[1] High-elevation forests represent a large fraction of potential carbon uptake in North America, but this uptake is not well constrained by observations. Additionally, forests in the Rocky Mountains have recently been severely damaged by drought, fire, and insect outbreaks, which have been quantified at local scales but not assessed in terms of carbon uptake at regional scales. The Airborne Carbon in the Mountains Experiment was carried out in 2007 partly to assess carbon uptake in western U.S. mountain ecosystems. The magnitude and seasonal change of carbon uptake were quantified by (1) paired upwind-downwind airborne CO2 observations applied in a boundary layer budget, (2) a spatially explicit ecosystem model constrained using remote sensing and flux tower observations, and (3) a downscaled global tracer transport inversion. Top-down approaches had mean carbon uptake equivalent to flux tower observations at a subalpine forest, while the ecosystem model showed less. The techniques disagreed on temporal evolution. Regional carbon uptake was greatest in the early summer immediately following snowmelt and tended to lessen as the region experienced dry summer conditions. This reduction was more pronounced in the airborne budget and inversion than in flux tower or upscaling, possibly related to lower snow water availability in forests sampled by the aircraft, which were lower in elevation than the tower site. Changes in vegetative greenness associated with insect outbreaks were detected using satellite reflectance observations, but impacts on regional carbon cycling were unclear, highlighting the need to better quantify this emerging disturbance effect on montane forest carbon cycling.
Resumo:
Statistical methods of inference typically require the likelihood function to be computable in a reasonable amount of time. The class of “likelihood-free” methods termed Approximate Bayesian Computation (ABC) is able to eliminate this requirement, replacing the evaluation of the likelihood with simulation from it. Likelihood-free methods have gained in efficiency and popularity in the past few years, following their integration with Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) in order to better explore the parameter space. They have been applied primarily to estimating the parameters of a given model, but can also be used to compare models. Here we present novel likelihood-free approaches to model comparison, based upon the independent estimation of the evidence of each model under study. Key advantages of these approaches over previous techniques are that they allow the exploitation of MCMC or SMC algorithms for exploring the parameter space, and that they do not require a sampler able to mix between models. We validate the proposed methods using a simple exponential family problem before providing a realistic problem from human population genetics: the comparison of different demographic models based upon genetic data from the Y chromosome.
Resumo:
Sampling strategies for monitoring the status and trends in wildlife populations are often determined before the first survey is undertaken. However, there may be little information about the distribution of the population and so the sample design may be inefficient. Through time, as data are collected, more information about the distribution of animals in the survey region is obtained but it can be difficult to incorporate this information in the survey design. This paper introduces a framework for monitoring motile wildlife populations within which the design of future surveys can be adapted using data from past surveys whilst ensuring consistency in design-based estimates of status and trends through time. In each survey, part of the sample is selected from the previous survey sample using simple random sampling. The rest is selected with inclusion probability proportional to predicted abundance. Abundance is predicted using a model constructed from previous survey data and covariates for the whole survey region. Unbiased design-based estimators of status and trends and their variances are derived from two-phase sampling theory. Simulations over the short and long-term indicate that in general more precise estimates of status and trends are obtained using this mixed strategy than a strategy in which all of the sample is retained or all selected with probability proportional to predicted abundance. Furthermore the mixed strategy is robust to poor predictions of abundance. Estimates of status are more precise than those obtained from a rotating panel design.
Resumo:
The extent and thickness of the Arctic sea ice cover has decreased dramatically in the past few decades with minima in sea ice extent in September 2005 and 2007. These minima have not been predicted in the IPCC AR4 report, suggesting that the sea ice component of climate models should more realistically represent the processes controlling the sea ice mass balance. One of the processes poorly represented in sea ice models is the formation and evolution of melt ponds. Melt ponds accumulate on the surface of sea ice from snow and sea ice melt and their presence reduces the albedo of the ice cover, leading to further melt. Toward the end of the melt season, melt ponds cover up to 50% of the sea ice surface. We have developed a melt pond evolution theory. Here, we have incorporated this melt pond theory into the Los Alamos CICE sea ice model, which has required us to include the refreezing of melt ponds. We present results showing that the presence, or otherwise, of a representation of melt ponds has a significant effect on the predicted sea ice thickness and extent. We also present a sensitivity study to uncertainty in the sea ice permeability, number of thickness categories in the model representation, meltwater redistribution scheme, and pond albedo. We conclude with a recommendation that our melt pond scheme is included in sea ice models, and the number of thickness categories should be increased and concentrated at lower thicknesses.
Resumo:
During winter the ocean surface in polar regions freezes over to form sea ice. In the summer the upper layers of sea ice and snow melts producing meltwater that accumulates in Arctic melt ponds on the surface of sea ice. An accurate estimate of the fraction of the sea ice surface covered in melt ponds is essential for a realistic estimate of the albedo for global climate models. We present a melt-pond–sea-ice model that simulates the three-dimensional evolution of melt ponds on an Arctic sea ice surface. The advancements of this model compared to previous models are the inclusion of snow topography; meltwater transport rates are calculated from hydraulic gradients and ice permeability; and the incorporation of a detailed one-dimensional, thermodynamic radiative balance. Results of model runs simulating first-year and multiyear sea ice are presented. Model results show good agreement with observations, with duration of pond coverage, pond area, and ice ablation comparing well for both the first-year ice and multiyear ice cases. We investigate the sensitivity of the melt pond cover to changes in ice topography, snow topography, and vertical ice permeability. Snow was found to have an important impact mainly at the start of the melt season, whereas initial ice topography strongly controlled pond size and pond fraction throughout the melt season. A reduction in ice permeability allowed surface flooding of relatively flat, first-year ice but had little impact on the pond coverage of rougher, multiyear ice. We discuss our results, including model shortcomings and areas of experimental uncertainty.
Resumo:
The wood mouse is a common and abundant species in agricultural landscape and is a focal species in pesticide risk assessment. Empirical studies on the ecology of the wood mouse have provided sufficient information for the species to be modelled mechanistically. An individual-based model was constructed to explicitly represent the locations and movement patterns of individual mice. This together with the schedule of pesticide application allows prediction of the risk to the population from pesticide exposure. The model included life-history traits of wood mice as well as typical landscape dynamics in agricultural farmland in the UK. The model obtains a good fit to the available population data and is fit for risk assessment purposes. It can help identify spatio-temporal situations with the largest potential risk of exposure and enables extrapolation from individual-level endpoints to population-level effects. Largest risk of exposure to pesticides was found when good crop growth in the “sink” fields coincided with high “source” population densities in the hedgerows. Keywords: Population dynamics, Pesticides, Ecological risk assessment, Habitat choice, Agent-based model, NetLogo
Resumo:
It has long been supposed that preference judgments between sets of to-be-considered possibilities are made by means of initially winnowing down the most promising-looking alternatives to form smaller “consideration sets” (Howard, 1963; Wright & Barbour, 1977). In preference choices with >2 options, it is standard to assume that a “consideration set”, based upon some simple criterion, is established to reduce the options available. Inferential judgments, in contrast, have more frequently been investigated in situations in which only two possibilities need to be considered (e.g., which of these two cities is the larger?) Proponents of the “fast and frugal” approach to decision-making suggest that such judgments are also made on the basis of limited, simple criteria. For example, if only one of two cities is recognized and the task is to judge which city has the larger population, the recognition heuristic states that the recognized city should be selected. A multinomial processing tree model is outlined which provides the basis for estimating the extent to which recognition is used as a criterion in establishing a consideration set for inferential judgments between three possible options.
Resumo:
It is well established that variations in polar stratospheric winds can affect mesospheric temperatures through changes in the filtering of gravity wave fluxes, which drive a residual circulation in the mesosphere. The Canadian Middle Atmosphere Model(CMAM) is used to examine this vertical coupling mechanism in the context of the mesospheric response to the Antarctic ozone hole. It is found that the response differs significantly between late spring and early summer, because of a changing balance between the competing effects of parametrised gravity wavedrag (GWD)and changes in resolved wave drag local to the mesosphere. In late spring, the strengthened stratospheric westerlies arising from the ozone hole lead to reduced eastward GWD in the mesosphere and a warming of the polar mesosphere, just as in the well known mesospheric response to sudden stratospheric warmings, but with an opposite sign.In early summer, with easterly flow revailing over most of the polar stratosphere,the strengthened easterly wind shear within the mesosphere arising from the west ward GWD anomaly induces a positive resolved wave drag anomaly through baroclinic instability. The polar cooling induced by this process completely dominates the upper mesospheric response to the ozone hole in early summer. Consequences for the past and future evolution of noctilucent clouds are discussed
Resumo:
Energy fluxes for polar regions are examined for two 30-year periods, representing the end of the 20th and 21st centuries, using data from high resolution simulations with the ECHAM5 climate model. The net radiation to space for the present climate agrees well with data from the Clouds and the Earth’s Radiant Energy System (CERES) over the northern polar region but shows an underestimation in planetary albedo for the southern polar region. This suggests there are systematic errors in the atmospheric circulation or in the net surface energy fluxes in the southern polar region. The simulation of the future climate is based on the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. The total energy transport is broadly the same for the two 30 year periods, but there is an increase in the moist energy transport of the order of 6 W m−2 and a corresponding reduction in the dry static energy. For the southern polar region the proportion of moist energy transport is larger and the dry static energy correspondingly smaller for both periods. The results suggest a possible mechanism for the warming of the Arctic that is discussed. Changes between the 20th and 21st centuries in the northern polar region show the net ocean surface radiation flux in summer increases ~18W m−2 (24%). For the southern polar region the response is different as there is a decrease in surface solar radiation. We suggest that this is caused by changes in cloudiness associated with the poleward migration of the storm tracks.
Resumo:
A high-resolution GCM is found to simulate precipitation and surface energy balance of high latitudes with high accuracy. This opens new possibilities to investigate the future mass balance of polar glaciers and its effect on sea level. The surface mass balance of the Greenland and the Antarctic ice sheets is simulated using the ECHAM3 GCM with TI06 horizontal resolution. With this model, two 5-year integrations for the present and doubled carbon dioxide conditions based on the boundary conditions provided by the ECHAM1/T21 transient experiment have been conducted. A comparison of the two experiments over Greenland and Antarctica shows to what extent the effect of climate change on the mass balance on the two largest glaciers of the world can differ. On Greenland one sees a slight decrease in accumulation and a substantial increase in melt, while on Antarctica a large increase in accumulation without melt is projected. Translating the mass balances into terms of sea-level equivalent. the Greenland discharge causes a sea level rise of 1.1 mm yr−1, while the accumulation on Antarctica tends to lower it by 0.9 mm yr−1. The change in the combined mass balance of the two continents is almost zero. The sea level change of the next century can be affected more effectively by the thermal expansion of seawater and the mass balance of smaller glaciers outside of Greenland and Antarctica.
Resumo:
Background: Exposure to solar ultraviolet-B (UV-B) radiation is a major source of vitamin D3. Chemistry climate models project decreases in ground-level solar erythemal UV over the current century. It is unclear what impact this will have on vitamin D status at the population level. The purpose of this study was to measure the association between ground-level solar UV-B and serum concentrations of 25-hydroxyvitamin D (25(OH)D) using a secondary analysis of the 2007 to 2009 Canadian Health Measures Survey (CHMS). Methods: Blood samples collected from individuals aged 12 to 79 years sampled across Canada were analyzed for 25(OH)D (n=4,398). Solar UV-B irradiance was calculated for the 15 CHMS collection sites using the Tropospheric Ultraviolet and Visible Radiation Model. Multivariable linear regression was used to evaluate the association between 25(OH)D and solar UV-B adjusted for other predictors and to explore effect modification. Results: Cumulative solar UV-B irradiance averaged over 91 days (91-day UV-B) prior to blood draw correlated significantly with 25(OH)D. Independent of other predictors, a 1 kJ/m 2 increase in 91-day UV-B was associated with a significant 0.5 nmol/L (95% CI 0.3-0.8) increase in mean 25(OH)D (P =0.0001). The relationship was stronger among younger individuals and those spending more time outdoors. Based on current projections of decreases in ground-level solar UV-B, we predict less than a 1 nmol/L decrease in mean 25(OH)D for the population. Conclusions: In Canada, cumulative exposure to ambient solar UV-B has a small but significant association with 25(OH)D concentrations. Public health messages to improve vitamin D status should target safe sun exposure with sunscreen use, and also enhanced dietary and supplemental intake and maintenance of a healthy body weight.
Resumo:
The extended Canadian Middle Atmosphere Model is used to investigate the large-scale dynamics of the mesosphere and lower thermosphere (MLT). It is shown that the 4-day wave is substantially amplified in southern polar winter in the presence of instabilities arising from strong vertical shears in the MLT zonal mean zonal winds brought about by parameterized nonorographic gravity wave drag. A weaker 4-day wave in northern polar winter is attributed to the weaker wind shears that result from weaker parameterized wave drag. The 2-day wave also exhibits a strong dependence on zonal wind shears, in agreement with previous modeling studies. In the equatorial upper mesosphere, the migrating diurnal tide provides most of the resolved westward wave forcing, which varies semiannually in conjunction with the tide itself; resolved forcing by eastward traveling disturbances is dominated by smaller scales. Nonmigrating tides and other planetary-scale waves play only a minor role in the zonal mean zonal momentum budget in the tropics at these heights. Resolved waves are shown to play a significant role in the zonal mean meridional momentum budget in the MLT, impacting significantly on gradient wind balance. Balance fails at low latitudes as a result of a strong Reynolds stress associated with the migrating diurnal tide, an effect which is most pronounced at equinox when the tide is strongest. Resolved and parameterized waves account for most of the imbalance at higher latitudes in summer. This results in the gradient wind underestimating the actual eastward wind reversal by up to 40%.