780 resultados para Polyphase Microstructure
Resumo:
Analysis of the oil-absorption process in deep-fat fried potato cylinders (frying temperatures of 155degreesC, 170degreesC, and 185degreesC) allowed to distinguish 3 oil fractions: structural oil (absorbed during frying), penetrated surface oil (suctioned during cooling), and surface oil. Results showed that a small amount of oil penetrates during frying because most of the oil was picked up at the end of the process, suggesting that oil uptake and water removal are not synchronous phenomena. After cooling, oil was located either on the surface of the chip or suctioned into the porous crust microstructure, with an inverse relationship between them for increasing frying times.
Resumo:
Rationale: Central cannabinoid systems have been implicated in appetite control through the respective hyperphagic and anorectic actions of CB1 agonists and antagonists. The motivational changes underlying these actions remain to be determined, but may involve alterations to food palatability. Objectives: The mode of action of cannabinoids on ingestion was investigated by examining the effects of exogenous and endogenous agonists, and a selective CB1 receptor antagonist, on licking microstructure in rats ingesting a palatable sucrose solution. Methods: Microstructural analyses of licking for a 10% sucrose solution was performed over a range of agonist and antagonist doses administered to non-deprived, male Lister hooded rats. Results: Delta(9)-tetrahydrocannabinol (0.5, 1 and 3 mg/kg) and anandamide (1 mg/kg and 3 mg/kg) significantly increased total number of licks. This was primarily due to an increase in bout duration rather than bout number. There was a nonsignificant increase in total licks following administration of 2-arachidonoyl glycerol (0.2, 1.0 and 2.0 mg/kg), whereas administration of the CB1 antagonist SR141716 (1 mg/kg and 3 mg/kg) significantly decreased total licks. All drugs, with the exception of anandamide, significantly decreased the intra-bout lick rate. An exponential function fitted to the cumulative lick rate curves for each drug revealed that all compounds altered the asymptote of this function without having any marked effects on the exponent. Conclusions: These data are consistent with endocannabinoid involvement in the mediation of food palatability.
Resumo:
Dhaka cheese is a semihard artisanal variety originating from Bangladesh where manual curd kneading is a normal stage in its manufacture. Dhaka cheeses were produced with different degrees of curd kneading to quantify the curd manipulation process in terms of pressure and to standardise the length of operation. The effect of manipulation on the composition, rheology, texture and microstructure of fresh cheese was also studied. Manipulation had significant effects (P < 0.05–0.001) on most of the parameters studied. One minute of curd manipulation was found to be sufficient for Dhaka cheesemaking
Resumo:
Experiments were performed to investigate the evolution of structure and morphology of the network in polymer-stabilised liquid crystals. In situ optical microscopy revealed that the morphology was significantly altered by extraction of the LC host, while scanning electron microscopy showed that the network morphology was also dependent on the polymerisation conditions and closely related to the depletion of monomer, as monitored by high performance liquid chromatography. Transmission electron microscopy allowed observation of internal structure, resolving microstructure on the order of 0. 1 μm.
Resumo:
The optical microstructures of thin sections of two liquid crystalline polymers are examined in the polarizing microscope. The polymers are random copolyesters based on hydroxybenzoic and hydroxynaphthoic acids (B-N), and hydroxybenzoic acid and ethylene terephthalate (B-ET). Sections cut from oriented samples, so as to include the extrusion direction, show microstructures in which there is no apparent preferred orientation of the axes describing the local optical anisotropy. The absence of preferred orientation in the microstructure, despite marked axial alignment of molecular chain segments as demonstrated by X-Ray diffraction, is interpreted in terms of the polymer having biaxial optical properties. The implication of optical biaxiality is that, although the mesophases are nematic, the orientation of the molecules is correlated about three (orthogonal) axes over distances greater than a micron. The structure is classified as a multiaxial nematic.
Resumo:
The effect of high-pressure (HP) pretreatment on oil uptake of potato slices is examined in this paper. Potato slices were treated either by HP or thermal blanching, or a combination of thermal blanching followed by HP prior to frying. The effect of HP on starch gelatinization and potato microstructure was assessed by differential scanning calorimeter and environmental scanning electron microscope (ESEM), respectively. After treatments, the slices were fried in sunflower oil at 185 °C for a predetermined time. Frying time was either kept constant (4 min) or varied according to the time needed to reach a desired moisture content of ≈2%. The high pressure applied in this study was found not to be sufficient to cause a significant degree of starch gelatinization. Analysis of the ESEM images showed that blanching had a limited effect on cell wall integrity. HP pretreatment was found to increase the oil uptake marginally. When frying for a fixed time, the highest total oil content was found in slices treated at 200 MPa for 5 min. The oil content was found to increase significantly (p<0.05) to 41.23±1.82 compared to 29.03±0.21 in the control slices. The same effect of pressure on oil content was found when the time of frying varied. On the other hand, HP pretreatment was found to decrease the frying time required to achieve a given moisture content. Thus, high-pressure pretreatment may be used to reduce the frying time, but not oil uptake.
Resumo:
Rationale: Increased food consumption following Δ9- tetrahydrocannabinol-induced cannabinoid type 1 receptor agonism is well documented. However, possible non-Δ9- tetrahydrocannabinol phytocannabinoid-induced feeding effects have yet to be fully investigated. Therefore, we have assessed the effects of the individual phytocannabinoids, cannabigerol, cannabidiol and cannabinol, upon feeding behaviors. Methods: Adult male rats were treated (p.o.) with cannabigerol, cannabidiol, cannabinol or cannabinol plus the CB1R antagonist, SR141716A. Prior to treatment, rats were satiated and food intake recorded following drug administration. Data were analyzed for hourly intake and meal microstructure. Results: Cannabinol induced a CB1R-mediated increase in appetitive behaviors via significant reductions in the latency to feed and increases in consummatory behaviors via increases in meal 1 size and duration. Cannabinol also significantly increased the intake during hour 1 and total chow consumed during the test. Conversely, cannabidiol significantly reduced total chow consumption over the test period. Cannabigerol administration induced no changes to feeding behavior. Conclusion: This is the first time cannabinol has been shown to increase feeding. Therefore, cannabinol could, in the future, provide an alternative to the currently used and psychotropic Δ9-tetrahydrocannabinol-based medicines since cannabinol is currently considered to be non-psychotropic. Furthermore, cannabidiol reduced food intake in line with some existing reports, supporting the need for further mechanistic and behavioral work examining possible anti-obesity effects of cannabidiol.
Resumo:
A detailed quantitative microstructural study coupled with cathodoluminescence and geochemical analyses on marbles from Naxos demonstrates that the analysis of microstructures is the most sensitive method to define the origin of marbles within, and between, different regions. Microstructure examination can only be used as an accurate provenance tool if a correction for the second-phase content is considered. If second phases are not considered, a large spread of different microstructures occurs within sample sites, making a separation between neighbouring outcrops difficult or impossible. Moreover, this study shows that the origin of a marble is defined more precisely if the microstructural observations are coupled with cathodoluminescence data.
Resumo:
We have fabricated a compliant neural interface to record afferent nerve activity. Stretchable gold electrodes were evaporated on a polydimethylsiloxane (PDMS) substrate and were encapsulated using photo-patternable PDMS. The built-in microstructure of the gold film on PDMS allows the electrodes to twist and flex repeatedly, without loss of electrical conductivity. PDMS microchannels (5mm long, 100μm wide, 100μm deep) were then plasma bonded irreversibly on top of the electrode array to define five parallel-conduit implants. The soft gold microelectrodes have a low impedance of ~200kΩ at the 1kHz frequency range. Teased nerves from the L6 dorsal root of an anaesthetized Sprague Dawley rat were threaded through the microchannels. Acute tripolar recordings of cutaneous activity are demonstrated, from multiple nerve rootlets simultaneously. Confinement of the axons within narrow microchannels allows for reliable recordings of low amplitude afferents. This electrode technology promises exciting applications in neuroprosthetic devices including bladder fullness monitors and peripheral nervous system implants.
Resumo:
We investigate in detail the initial susceptibility, magnetization curves, and microstructure of ferrofluids in various concentration and particle dipole moment ranges by means of molecular dynamics simulations. We use the Ewald summation for the long-range dipolar interactions, take explicitly into account the translational and rotational degrees of freedom, coupled to a Langevin thermostat. When the dipolar interaction energy is comparable with the thermal energy, the simulation results on the magnetization properties agree with the theoretical predictions very well. For stronger dipolar couplings, however, we find systematic deviations from the theoretical curves. We analyze in detail the observed microstructure of the fluids under different conditions. The formation of clusters is found to enhance the magnetization at weak fields and thus leads to a larger initial susceptibility. The influence of the particle aggregation is isolated by studying ferro-solids, which consist of magnetic dipoles frozen in at random locations but which are free to rotate. Due to the artificial suppression of clusters in ferrosolids the observed susceptibility is considerably lowered when compared to ferrofluids.
Resumo:
Langevin dynamics simulations are used to investigate the equilibrium magnetization properties and structure of magnetic dipolar fluids. The influence of using different boundary conditions are systematically studied. Simulation results on the initial susceptibility and magnetization curves are compared with theoretical predictions. The effect of particle aggregation is discussed in detail by performing a cluster analysis of the microstructure.
Resumo:
The effect of the direction of external electric field on the shear stress of an ER fluid has been studied by molecular-dynamics simulation. Due to the formation of inclined chains, the shear stress strongly depends on the direction of the field, and it may be very large under some special field direction. And theoretical model of ideal microstructure of ER fluids has proved this result. Thus the ER effect may be greatly enhanced just by choosing an optimum direction for the field without any additional requirement, suggesting a promising way to the practical application of ER fluids.
Resumo:
We use both Granger-causality and instrumental variables (IV) methods to examine the impact of index fund positions on price returns for the main US grains and oilseed futures markets. Our analysis supports earlier conclusions that Granger-causal impacts are generally not discernible. However, market microstructure theory suggests trading impacts should be instantaneous. IV-based tests for contemporaneous causality provide stronger evidence of price impact. We find even stronger evidence that changes in index positions can help predict future changes in aggregate commodity price indices. This result suggests that changes in index investment are in part driven by information which predicts commodity price changes over the coming months.
Resumo:
The effects of several fat replacement levels (0%, 35%, 50%, 70%, and 100%) by inulin in sponge cake microstructure and physicochemical properties were studied. Oil substitution for inulin decreased significantly (P < 0.05) batter viscosity, giving heterogeneous bubbles size distributions as it was observed by light microscopy. Using confocal laser scanning microscopy the fat was observed to be located at the bubbles’ interface, enabling an optimum crumb cake structure development during baking. Cryo-SEM micrographs of cake crumbs showed a continuous matrix with embedded starch granules and coated with oil; when fat replacement levels increased, starch granules appeared as detached structures. Cakes with fat replacement up to 70% had a high crumb air cell values; they were softer and rated as acceptable by an untrained sensory panel (n = 51). So, the reformulation of a standard sponge cake recipe to obtain a new product with additional health benefits and accepted by consumers is achieved.
Resumo:
Air frying is being projected as an alternative to deep fat frying for producing snacks such as French Fries. In air frying, the raw potato sections are essentially heated in hot air containing fine oil droplets, which dehydrates the potato and attempts to impart the characteristics of traditionally produced French fries, but with a substantially lower level of fat absorbed in the product. The aim of this research is to compare: 1) the process dynamics of air frying with conventional deep fat frying under otherwise similar operating conditions, and 2) the products formed by the two processes in terms of color, texture, microstructure, calorimetric properties and sensory characteristics Although, air frying produced products with a substantially lower fat content but with similar moisture contents and color characteristics, it required much longer processing times, typically 21 minutes in relation to 9 minutes in the case of deep fat frying. The slower evolution of temperature also resulted in lower rates of moisture loss and color development reactions. DSC studies revealed that the extent of starch gelatinization was also lower in the case of air fried product. In addition, the two types of frying also resulted in products having significantly different texture and sensory characteristics.