953 resultados para Polygenic inheritance
Resumo:
Fluxus è stato definito il più radicale e sperimentale movimento artistico degli anni Sessanta. Dalla prima comparsa ad oggi è stato osannato, analizzato, dimenticato e riscoperto molte volte, tuttora però rimane una delle più grandi incognite critiche della storia dell’arte del Novecento. La ricerca si sviluppa secondo uno schema tripartito: indagare origini, ascendenze e ispirazioni; collocare e contestualizzare il periodo di nascita e sviluppo; esaminare influenze e lasciti. Attraverso un confronto di manifesti, scritti autografi e opere si è cercato di verificare punti di contatto e di continuità tra Fluxus e le Avanguardie Storiche, con particolare riferimento a Futurismo e Dadaismo. Successivamente si è cercato di ricostruire le dinamiche che hanno portato, alla fine degli anni Cinquanta, al definirsi di un terreno fertile dal quale sono germinate esperienze strettamente legate quali Happening, Performance Art e lo stesso Fluxus, del quale si sono ripercorsi i cosiddetti “anni eroici” per evidenziarne le caratteristiche salienti. Nella terza sezione sono state individuate diverse ipotesi di continuazione dell’attitudine Fluxus, dal percorso storico-filologico dei precoci tentativi di musealizzazione, alle eredità dirette e indirette sulle generazioni successive di artisti, fino alla individuazione di idee e concetti la cui attualità rende Fluxus un elemento imprescindibile per la comprensione della cultura contemporanea.
Resumo:
Nocturnal Frontal Lobe Epilepsy (NFLE) is characterized by onset during infancy or childhood with persistence in adulthood, family history of similar nocturnal episodes simulating non-REM parasomnias (sleep terrors or sleepwalking), general absence of morphological substrates, often by normal interictal electroencephalographical recordings (EEGs) during wakefulness. A family history of epilepsy may be present with Mendelian autosomal dominant inheritance has been described in some families. Recent studies indicate the involvement of neuronal nicotinic acetylcholine receptors (nAChRs) in the molecular mechanisms of NFLE. Mutations in the genes encoding for the α4 (CHRNA4) and ß2 (CHRNB2) subunits of the nAChR induce changes in the biophysical properties of nAChR, resulting generally in a “gain of function”. Preclinical studies report that activation of a nuclear receptor called type peroxisome proliferator-activated receptor (PPAR-α) by endogenous molecules or by medications (e.g. fenofibrate) reduces the activity of the nAChR and, therefore, may decrease the frequency of seizures. Thus, we hypothesize that negative modulation of nAChRs might represent a therapeutic strategy to be explored for pharmacological treatment of this form of epilepsy, which only partially responds to conventional antiepileptic drugs. In fact, carbamazepine, the current medication for NFLE, abolishes the seizures only in one third of the patients. The aim of the project is: 1)_to verify the clinical efficacy of adjunctive therapy with fenofibrate in pharmacoresistant NFLE and ADNFLE patients; focousing on the analysis of the polysomnographic action of the PPAR- agonist (fenofibrate). 2)_to demonstrate the subtended mechanism of efficacy by means of electrophysiological and behavioral experiments in an animal model of the disease: particularly, transgenic mice carrying the mutation in the nAChR 4 subunit (Chrna4S252F) homologous to that found in the humans. Given that a PPAR-α agonist, FENOFIBRATE, already clinically utilized for lipid metabolism disorders, provides a promising therapeutic avenue in the treatment of NFLE\ADNFLE.
Resumo:
Autism spectrum disorder (ASD) and Intellectual Disability (ID) are complex neuropsychiatric disorders characterized by extensive clinical and genetic heterogeneity and with overlapping risk factors. The aim of my project was to further investigate the role of Copy Numbers Variants (CNVs), identified through genome-wide studies performed by the Autism Geome Project (AGP) and the CHERISH consortium in large cohorts of ASD and ID cases, respectively. Specifically, I focused on four rare genic CNVs, selected on the basis of their impact on interesting ASD/ID candidate genes: a) a compound heterozygous deletion involving CTNNA3, predicted to cause the lack of functional protein; b) a 15q13.3 duplication containing CHRNA7; c) a 2q31.1 microdeletion encompassing KLHL23, SSB and METTL5; d) Lastly, I investigated the putative imprinting regulation of the CADPS2 gene, disrupted by a maternal deletion in two siblings with ASD and ID. This study provides further evidence for the role of CTNNA3, CHRNA7, KLHL23 and CADPS2 as ASD and/or ID susceptibility genes, and highlights that rare genetic variation contributes to disease risk in different ways: some rare mutations, such as those impacting CTNNA3, act in a recessive mode of inheritance, while other CNVs, such as those occurring in the 15q13.3 region, are implicated in multiple developmental and/or neurological disorders possibly interacting with other susceptibility variants elsewhere in the genome. On the other hand, the discovery of a tissue-specific monoallelic expression for the CADPS2 gene, implicates the involvement of epigenetic regulatory mechanisms as risk factors conferring susceptibility to ASD/ID.
Resumo:
Inheritance of a mutant allele of the von Hippel-Lindau tumor suppressor gene predisposes affected individuals to develop renal cysts and clear cell renal cell carcinoma. Von Hippel-Lindau gene inactivation in single renal tubular cells has indirectly been showed by immunohistochemical staining for the hypoxia-inducible factor alpha target gene product carbonic anhydrase IX. In this study we were able to show von Hippel-Lindau gene deletion in carbonic anhydrase IX positive nonneoplastic renal tubular cells, in epithelial cells lining renal cysts and in a clear cell renal cell carcinoma of a von Hippel-Lindau patient. This was carried out by means of laser confocal microscopy and immunohistochemistry in combination with fluorescence in situ hybridization. Carbonic anhydrase IX negative normal renal tubular cells carried no von Hippel-Lindau gene deletion. Furthermore, recent studies have indicated that the von Hippel-Lindau gene product is necessary for the maintenance of primary cilia stability in renal epithelial cells and that disruption of the cilia structure by von Hippel-Lindau gene inactivation induces renal cyst formation. In our study, we show a significant shortening of primary cilia in epithelial cells lining renal cysts, whereas, single tubular cells with a von Hippel-Lindau gene deletion display to a far lesser extent signs of cilia shortening. Our in vivo results support a model in which renal cysts represent precursor lesions for clear cell renal cell carcinoma and arise from single renal tubular epithelial cells owing to von Hippel-Lindau gene deletion.
Resumo:
The current status of child and adolescent psychiatric genetics appears promising in light of the initiation of genome-wide association studies (GWAS) for diverse polygenic disorders and the molecular elucidation of monogenic Rett syndrome, for which recent functional studies provide hope for pharmacological treatment strategies. Within the last 50 years, tremendous progress has been made in linking genetic variation to behavioral phenotypes and psychiatric disorders. We summarize the major findings of the Human Genome Project and dwell on largely unsuccessful candidate gene and linkage studies. GWAS for the first time offer the possibility to detect single nucleotide polymorphisms and copy number variants without a priori hypotheses as to their molecular etiology. At the same time it is becoming increasingly clear that very large sample sizes are required in order to enable genome wide significant findings, thus necessitating further large-scaled ascertainment schemes for the successful elucidation of the molecular genetics of childhood and adolescent psychiatric disorders. We conclude by reflecting on different scenarios for future research into the molecular basis of early onset psychiatric disorders. This review represents the introductory article of this special issue of the European Child and Adolescent Psychiatry.
Resumo:
Reengineering and integrated development plat- forms typically do not list search results in a particularly useful order. PageRank is the algorithm prominently used by the Google internet search engine to rank the relative importance of elements in a set of hyperlinked documents. To determine the relevance of objects, classes, attributes, and methods we propose to apply PageRank to software artifacts and their relationship (reference, inheritance, access, and invocation). This paper presents various experiments that demonstrate the usefulness of the ranking algorithm in software (re)engineering.
Resumo:
Recombinant human growth hormone (rhGH) therapy is used in the long-term treatment of children with growth disorders, but there is considerable treatment response variability. The exon 3-deleted growth hormone receptor polymorphism (GHR(d3)) may account for some of this variability. The authors performed a systematic review (to April 2011), including investigator-only data, to quantify the effects of the GHR(fl-d3) and GHR(d3-d3) genotypes on rhGH therapy response and used a recently established Bayesian inheritance model-free approach to meta-analyze the data. The primary outcome was the 1-year change-in-height standard-deviation score for the 2 genotypes. Eighteen data sets from 12 studies (1,527 children) were included. After several prior assumptions were tested, the most appropriate inheritance model was codominant (posterior probability = 0.93). Compared with noncarriers, carriers had median differences in 1-year change-in-height standard-deviation score of 0.09 (95% credible interval (CrI): 0.01, 0.17) for GHR(fl-d3) and of 0.14 (95% CrI: 0.02, 0.26) for GHR(d3-d3). However, the between-study standard deviation of 0.18 (95% CrI: 0.10, 0.33) was considerable. The authors tested by meta-regression for potential modifiers and found no substantial influence. They conclude that 1) the GHR(d3) polymorphism inheritance is codominant, contrasting with previous reports; 2) GHR(d3) genotypes account for modest increases in rhGH effects in children; and 3) considerable unexplained variability in responsiveness remains.
Resumo:
Human sexual determination is initiated by a cascade of genes that lead to the development of the fetal gonad. Whereas development of the female external genitalia does not require fetal ovarian hormones, male genital development requires the action of testicular testosterone and its more potent derivative dihydrotestosterone (DHT). The "classic" biosynthetic pathway from cholesterol to testosterone in the testis and the subsequent conversion of testosterone to DHT in genital skin is well established. Recently, an alternative pathway leading to DHT has been described in marsupials, but its potential importance to human development is unclear. AKR1C2 is an enzyme that participates in the alternative but not the classic pathway. Using a candidate gene approach, we identified AKR1C2 mutations with sex-limited recessive inheritance in four 46,XY individuals with disordered sexual development (DSD). Analysis of the inheritance of microsatellite markers excluded other candidate loci. Affected individuals had moderate to severe undervirilization at birth; when recreated by site-directed mutagenesis and expressed in bacteria, the mutant AKR1C2 had diminished but not absent catalytic activities. The 46,XY DSD individuals also carry a mutation causing aberrant splicing in AKR1C4, which encodes an enzyme with similar activity. This suggests a mode of inheritance where the severity of the developmental defect depends on the number of mutations in the two genes. An unrelated 46,XY DSD patient carried AKR1C2 mutations on both alleles, confirming the essential role of AKR1C2 and corroborating the hypothesis that both the classic and alternative pathways of testicular androgen biosynthesis are needed for normal human male sexual differentiation.
Resumo:
Cardiomyopathies are severe degenerative disorders of the myocardium that lead to heart failure. During the last three decades bovine dilated cardiomyopathy (BDCMP) was observed worldwide in cattle of Holstein-Friesian origin. In the Swiss cattle population BDCMP affects Fleckvieh and Red Holstein breeds. The heart of affected animals is enlarged due to dilation of both ventricles. Clinical signs are caused by systolic dysfunction and affected individuals die as a result of severe heart insufficiency. BDCMP follows an autosomal recessive pattern of inheritance and the disease-causing locus was mapped to bovine chromosome 18 (BTA18). In the present study we describe the successful identification of the causative mutation in the OPA3 gene located on BTA18 that was previously reported to cause 3-methylglutaconic aciduria type III in Iraqi-Jewish patients. We demonstrated conclusive genetic and functional evidence that the nonsense mutation c.343C>T in the bovine OPA3 gene causes the late-onset dilated cardiomyopathy in Red Holstein cattle.
Resumo:
Tyrolean Grey cattle represent a local breed with a population size of approximately 5000 registered cows. In 2003, a previously unknown neurological disorder was recognized in Tyrolean Grey cattle. The clinical signs of the disorder are similar to those of bovine progressive degenerative myeloencephalopathy (weaver syndrome) in Brown Swiss cattle but occur much earlier in life. The neuropathological investigation of an affected calf showed axonal degeneration in the central nervous system (CNS) and femoral nerve. The pedigrees of the affected calves suggested a monogenic autosomal recessive inheritance. We localized the responsible mutation to a 1.9 Mb interval on chromosome 16 by genome-wide association and haplotype mapping. The MFN2 gene located in this interval encodes mitofusin 2, a mitochondrial membrane protein. A heritable human axonal neuropathy, Charcot-Marie-Tooth disease-2A2 (CMT2A2), is caused by MFN2 mutations. Therefore, we considered MFN2 a positional and functional candidate gene and performed mutation analysis in affected and control Tyrolean Grey cattle. We did not find any non-synonymous variants. However, we identified a perfectly associated silent SNP in the coding region of exon 20 of the MFN2 gene. This SNP is located within a putative exonic splice enhancer (ESE) and the variant allele leads to partial retention of the entire intron 19 and a premature stop codon in the aberrant MFN2 transcript. Thus we have identified a highly unusual splicing defect, where an exonic single base exchange leads to the retention of the preceding intron. This splicing defect represents a potential explanation for the observed degenerative axonopathy. Marker assisted selection can now be used to eliminate degenerative axonopathy from Tyrolean Grey cattle.
Resumo:
REASONS FOR PERFORMING STUDY: Exertional rhabdomyolysis (ER) and its familial basis in Warmblood horses is incompletely understood. OBJECTIVES: To describe the case details, clinical signs and management of ER-affected Warmblood horses from a family with a high prevalence of ER, to determine if histopathological signs of polysaccharide storage myopathy (PSSM) and the glycogen synthase (GYS1) mutation are associated with ER in this family, and to investigate potential risk factors for development of ER. METHODS: A family consisting of a sire with ER and 71 of his descendants was investigated. History of episodes of ER, husbandry, feeding and use was assessed by interviewing horse owners using a standardised questionnaire. All horses were genotyped for GYS1. In 10 ER-affected horses, muscle histopathology was evaluated. RESULTS: Signs of ER were reported in 39% of horses and 51% of the entire family possessed the GYS1 mutation. Horses possessing the GYS1 mutation had a 7.1-times increased risk for developing ER compared to those with the normal genotype (95% confidence interval [CI] 2.37-21.23, P = 0.0005). All muscle samples from horses in the family with ER showed polysaccharide accumulation typical for PSSM, amylase-resistant in 9/10 cases. There was evidence (odds ratio 5.6, CI 1.00-31.32, P = 0.05) that fat or oil feeding improved clinical signs of ER. No other effects of environmental factors associated with clinical signs of ER were identified. CONCLUSION AND POTENTIAL RELEVANCE: PSSM associated with the GYS1 mutation is one identifiable cause of ER in Warmblood horses. Signs of ER are not always manifest in GYS1 positive horses and there are also other causes for ER in Warmblood horses. Breeding animals with the GYS1 mutation results in a high prevalence of ER due to its dominant mode of inheritance.
Resumo:
A recent study showed increased resistance against strongylid nematodes in offspring of a stallion affected by recurrent airway obstruction (RAG) compared with unrelated pasture mates. Resistance against strongylid nematodes was associated with RAG affection. Hypothesis: Resistance against strongylid nematodes has a genetic basis. The genetic variants influencing strongylid resistance also influence RAG susceptibility. Faecal samples from the half-sibling offspring of two RAG-affected Warmblood stallions 98 offspring from the first family (family 1) and 79 from the second family (family 2) were analysed using a combined sedimentation-flotation method. The phenotype was defined as a binary trait - either positive or negative for egg shedding. The influence of non-genetic factors on egg shedding was analysed using SAS, the mode of inheritance was investigated using PAP and iBay, and the association between shedding of strongyle eggs and RAG was estimated by odds ratios. Previously established genotypes for 315 microsatellite markers were used for QTL analyses using GRID QTL. The inheritance of "strongylid egg shedding" is influenced by major genes on ECA15 and ECA20. Shedding of strongylid eggs is associated with RAG in family 1 but not in family 2. Conclusions: The status of "shedding of strongyle eggs" has a genetic background. The results were inconclusive as to whether "egg shedding" and RAG share common genetic components. Our results suggest that it may be possible to select for resistance against strongylid nematodes.
Resumo:
The goal of this study was to analyze the mode of inheritance of an overweight body condition in an experimental cat population. The cat population consisted of 95 cats of which 81 cats could be clearly classified into lean or overweight using the body condition scoring system according to Laflamme. The lean or overweight classification was then used for segregation analyses. Complex segregation analyses were employed to test for the significance of one environmental and 4 genetic models (general, mixed inheritance, major gene, and polygene). The general genetic model fit the data significantly better than the environmental model (P = 0.0013). Among all other models employed, the major gene model explained the segregation of the overweight phenotype best. This is the first study in which a genetic component could be shown to be responsible for the development of overweight in cats.
Resumo:
A 7-month-old New Forest foal presented for episodes of recumbency and stiffness with myotonic discharges on electromyography. The observed phenotype resembled congenital myotonia caused by CLCN1 mutations in goats and humans. Mutation of the CLCN1 gene was considered as possible cause and mutation analysis was performed. The affected foal was homozygous for a missense mutation (c.1775A>C, p.D592A) located in a well conserved domain of the CLCN1 gene. The mutation showed a recessive mode of inheritance within the reported pony family. Therefore, this CLCN1 polymorphism is considered to be a possible cause of congenital myotonia.
Resumo:
The polyneuropathy of juvenile Greyhound show dogs shows clinical similarities to the genetically heterogeneous Charcot-Marie-Tooth (CMT) disease in humans. The pedigrees containing affected dogs suggest monogenic autosomal recessive inheritance and all affected dogs trace back to a single male. Here, we studied the neuropathology of this disease and identified a candidate causative mutation. Peripheral nerve biopsies from affected dogs were examined using semi-thin histology, nerve fibre teasing and electron microscopy. A severe chronic progressive mixed polyneuropathy was observed. Seven affected and 17 related control dogs were genotyped on the 50k canine SNP chip. This allowed us to localize the causative mutation to a 19.5 Mb interval on chromosome 13 by homozygosity mapping. The NDRG1 gene is located within this interval and NDRG1 mutations have been shown to cause hereditary motor and sensory neuropathy-Lom in humans (CMT4D). Therefore, we considered NDRG1 a positional and functional candidate gene and performed mutation analysis in affected and control Greyhounds. A 10 bp deletion in canine NDRG1 exon 15 (c.1080_1089delTCGCCTGGAC) was perfectly associated with the polyneuropathy phenotype of Greyhound show dogs. The deletion causes a frame shift (p.Arg361SerfsX60) which alters several amino acids before a stop codon is encountered. A reduced level of NDRG1 transcript could be detected by RT-PCR. Western blot analysis demonstrated an absence of NDRG1 protein in peripheral nerve biopsy of an affected Greyhound. We thus have identified a candidate causative mutation for polyneuropathy in Greyhounds and identified the first genetically characterized canine CMT model which offers an opportunity to gain further insights into the pathobiology and therapy of human NDRG1 associated CMT disease. Selection against this mutation can now be used to eliminate polyneuropathy from Greyhound show dogs.