890 resultados para Pneumococcal Vaccines -- immunology
Resumo:
Psoriasis and psoriatic arthritis are common conditions for which treatment options have until recently been extremely limited. Recent advances in our understanding of the immunology and genetics underlying these conditions have been rapid, and have contributed to the development of new therapies for these diseases. This article discusses the current state of the art in our understanding of the aetiopathogenesis of psoriasis and psoriatic arthritis, and current therapies for the diseases.
Resumo:
Background: Although lentiviral vectors have been widely used for in vitro and in vivo gene therapy researches, there have been few studies systematically examining various conditions that may affect the determination of the number of viable vector particles in a vector preparation and the use of Multiplicity of Infection (MOI) as a parameter for the prediction of gene transfer events. Methods: Lentiviral vectors encoding a marker gene were packaged and supernatants concentrated. The number of viable vector particles was determined by in vitro transduction and fluorescent microscopy and FACs analyses. Various factors that may affect the transduction process, such as vector inoculum volume, target cell number and type, vector decay, variable vector - target cell contact and adsorption periods were studied. MOI between 0-32 was assessed on commonly used cell lines as well as a new cell line. Results: We demonstrated that the resulting values of lentiviral vector titre varied with changes of conditions in the transduction process, including inoculum volume of the vector, the type and number of target cells, vector stability and the length of period of the vector adsorption to target cells. Vector inoculum and the number of target cells determine the frequencies of gene transfer event, although not proportionally. Vector exposure time to target cells also influenced transduction results. Varying these parameters resulted in a greater than 50-fold differences in the vector titre from the same vector stock. Commonly used cell lines in vector titration were less sensitive to lentiviral vector-mediated gene transfer than a new cell line, FRL 19. Within 0-32 of MOI used transducing four different cell lines, the higher the MOI applied, the higher the efficiency of gene transfer obtained. Conclusion: Several variables in the transduction process affected in in vitro vector titration and resulted in vastly different values from the same vector stock, thus complicating the use of MOI for predicting gene transfer events. Commonly used target cell lines underestimated vector titre. However, within a certain range of MOI, it is possible that, if strictly controlled conditions are observed in the vector titration process, including the use of a sensitive cell line, such as FRL 19 for vector titration, lentivector-mediated gene transfer events could be predicted. © 2004 Zhang et al; licensee BioMed Central Ltd.
Resumo:
Objectives. Strong genetic association of rheumatoid arthritis (RA) with PADI4 (peptidyl arginine deiminase) has previously been described in Japanese, although this was not confirmed in a subsequent study in the UK. We therefore undertook a further study of genetic association between PADI4 and RA in UK Caucasians and also studied expression of PADI4 in the peripheral blood of patients with RA. Methods. Seven single-nucleotide polymorphisms (SNP) were genotyped using polymerase chain reaction (PCR)-restriction fragment length polymorphism in 111 RA cases and controls. A marker significantly associated with RA (PADI4_100, rs#2240339) in this first data set (P = 0.03) was then tested for association in a larger group of 439 RA patients and 428 controls. PADI4 transcription was also assessed by real-time quantitative PCR using RNA extracted from peripheral blood mononuclear cells from 13 RA patients and 11 healthy controls. Results. A single SNP was weakly associated with RA (P = 0.03) in the initial case-control study, a single SNP (PADI4_100) and a two marker haplotype of that SNP and the neighbouring SNP (PADI4_04) were significantly associated with RA (P = 0.02 and P = 0.03 respectively). PADI4_100 was not associated with RA in a second sample set. PADI4 expression was four times greater in cases than controls (P = 0.004), but expression levels did not correlate with the levels of markers of inflammation. Conclusion. PADI4 is significantly overexpressed in the blood of RA patients but genetic variation within PADI4 is not a major risk factor for RA in Caucasians.
Resumo:
The objective of this study was to investigate TNF promoter region polymorphisms for association with susceptibility to ankylosing spondylitis (AS). The TNF -238 and -308 polymorphisms were genotyped in 306 English AS cases and 204 ethnically matched healthy B27-positive controls, and 96 southern German AS cases, 58 B27-positive and 251 B27-negative ethnically matched controls. Additionally, the TNF -376 polymorphism was genotyped in the southern German cases and controls. In the southern German AS patients a significant reduction in TNF -308.2 alleles was seen, compared with B27 positive controls (odds ratio 0.4, P= 0.03, 95% confidence interval 0.2-0.9), but no difference in allele frequencies was observed at TNF -238. Significant association between AS and both TNF -238 and TNF -308 was excluded in the English cases. These results confirm previous observations in the southern German population of association between TNF promoter region polymorphisms and AS, but the lack of association in the English population suggests that these polymorphisms themselves are unlikely to be directly involved. More likely, a second, non-HLA-B, MHC locus is involved in susceptibility to AS in these two populations.
Resumo:
To evaluate the passage of cytokines through the gastrointestinal tract, we investigated the digestion of interleukin-8 (IL-8) and tumour necrosis factor α (TNFα), in vitro and in vivo, and their propensity to induce intestinal inflammation. We serially immuno-assayed IL-8 and TNFα solutions co-incubated with each of three pancreatin preparations at pH 4.5 and pH 8. We gavaged IL-8, TNFα and marker into 15 Wistar rats, and measured their faecal cytokine concentrations by ELISA and histologically examined their guts. IL-8 immunoreactivity was extinguished by all pancreatin preparations after 1 h of incubation at 37 °C. TNFα concentration progressively fell from 1 to 4 h with all enzyme preparations. Buffer control samples maintained their cytokine concentrations throughout incubation. No IL-8 or TNFα was detected in any rat faecal pellets. There was no significant proinflammatory effect of the gavaged cytokines on rat intestine. IL-8 and TNFα in aqueous solution could well be fully digested in the CF gut when transit time is normal and exogenous enzymes are provided, although cytokines swallowed in viscous sputum may be protected from such digestion
Resumo:
The costimulatory receptors CD28 and cytotoxic T-lymphocyte antigen (CTLA)-4 and their ligands, CD80 and CD86, are expressed on T lymphocytes; however, their functional roles during T cell-T cell interactions are not well known. The consequences of blocking CTLA-4-CD80/CD86 interactions on purified mouse CD4(+) T cells were studied in the context of the strength of signal (SOS). CD4(+) T cells were activated with phorbol 12-myristate 13-acetate (PMA) and different concentrations of a Ca2+ ionophore, Ionomycin (I), or a sarcoplasmic Ca2+ ATPase inhibitor, Thapsigargin (TG). Increasing concentrations of I or TG increased the amount of interleukin (IL)-2, reflecting the conversion of a low to a high SOS. During activation with PMA and low amounts of I, intracellular concentrations of calcium ([Ca2+](i)) were greatly reduced upon CTLA-4-CD80/CD86 blockade. Further experiments demonstrated that CTLA-4-CD80/CD86 interactions reduced cell cycling upon activation with PMA and high amounts of I or TG (high SOS) but the opposite occurred with PMA and low amounts of I or TG (low SOS). These results were confirmed by surface T-cell receptor (TCR)-CD3 signalling using a low SOS, for example soluble anti-CD3, or a high SOS, for example plate-bound anti-CD3. Also, CTLA-4-CD80/CD86 interactions enhanced the generation of reactive oxygen species (ROS). Studies with catalase revealed that H2O2 was required for IL-2 production and cell cycle progression during activation with a low SOS. However, the high amounts of ROS produced during activation with a high SOS reduced cell cycle progression. Taken together, these results indicate that [Ca2+](i) and ROS play important roles in the modulation of T-cell responses by CTLA-4-CD80/CD86 interactions.
Resumo:
The application of decellularized extracellular matrices to aid tissue regeneration in reconstructive surgery and regenerative medicine has been promising. Several decellularization protocols for removing cellular materials from natural tissues such as heart valves are currently in use. This paper evaluates the feasibility of potential extension of this methodology relative to the desirable properties of load bearing joint tissues such as stiffness, porosity and ability to recover adequately after deformation to facilitate physiological function. Two decellularization protocols, namely: Trypsin and Triton X-100 were evaluated against their effects on bovine articular cartilage, using biomechanical, biochemical and microstructural techniques. These analyses revealed that decellularization with trypsin resulted in severe loss of mechanical stiffness including deleterious collapse of the collagen architecture which in turn significantly compromised the porosity of the construct. In contrast, triton X-100 detergent treatment yielded samples that retain mechanical stiffness relative to that of the normal intact cartilage sample, but the resulting construct contained ruminant cellular constituents. We conclude that both of these common decellularization protocols are inadequate for producing constructs that can serve as effective replacement and scaffolds to regenerate articular joint tissue.
Resumo:
We had earlier proposed a hypothesis to explain the mechanism of perpetuation of immunological memory based on the operation of idiotypic network in the complete absence of antigen. Experimental evidences were provided for memory maintenance through anti-idiotypic antibody (Ab2) carrying the internal image of the antigen. In the present work, we describe a structural basis for such memory perpetuation by molecular modeling and structural analysis studies. A three-dimensional model of Ab2 was generated and the structure of the antigenic site on the hemagglutinin protein H of Rinderpest virus was modeled using the structural template of hemagglutinin protein of Measles virus. Our results show that a large portion of heavy chain containing the CDR regions of Ab2 resembles the domain of the hemagglutinin housing the epitope regions. The similarity demonstrates that an internal image of the H antigen is formed in Ab2, which provides a structural basis for functional mimicry demonstrated earlier. This work brings out the importance of the structural similarity between a domain of hemagglutinin protein to that of its corresponding Ab2. It provides evidence that Ab2 is indeed capable of functioning as surrogate antigen and provides support to earlier proposed relay hypothesis which has provided a mechanism for the maintenance of immunological memory.
Resumo:
We had earlier proposed a hypothesis to explain the mechanism of perpetuation of immunological memory based on the operation of idiotypic network in the complete absence of antigen. Experimental evidences were provided for memory maintenance through anti-idiotypic antibody (Ab(2)) carrying the internal image of the antigen. In the present work, we describe a structural basis for such memory perpetuation by molecular modeling and structural analysis studies. A three-dimensional model of Ab(2) was generated and the structure of the antigenic site on the hemagglutinin protein H of Rinderpest virus was modeled using the structural template of hemagglutinin protein of Measles virus. Our results show that a large portion of heavy chain containing the CDR regions of Ab(2) resembles the domain of the hemagglutinin housing the epitope regions. The similarity demonstrates that an internal image of the H antigen is formed in Ab(2), which provides a structural basis for functional mimicry demonstrated earlier. This work brings out the importance of the structural similarity between a domain of hemagglutinin protein to that of its corresponding Ab(2). It provides evidence that Ab(2) is indeed capable of functioning as surrogate antigen and provides support to earlier proposed relay hypothesis which has provided a mechanism for the maintenance of immunological memory.
Resumo:
The immune response against Salmonella is multi-faceted involving both the innate and the adaptive immune system. The characterization of specific Salmonella antigens inducing immune response could critically contribute to the development of epitope based vaccines for Salmonella. We have tried to identify a protective T cell epitope(s) of Salmonella, as cell mediated immunity conferred by CD8+ T cells is the most crucial subset conferring protective immunity against Salmonella. It being a proven fact that secreted proteins are better in inducing cell mediated immunity than cell surface and cytosolic antigens, we have analyzed all the genbank annotated Salmonella pathogenicity island 1 and 2 secreted proteins of Salmonella enterica serovar Typhimurium (S. typhimurium) and S. enterica serovar Typhi (S. typhi). They were subjected to BIMAS and SYFPEITHI analysis to map MHC-I and MHC-II binding epitopes. The huge profile of possible T cell epitopes obtained from the two classes of secreted proteins were tabulated and using a scoring system that considers the binding affinity and promiscuity of binding to more than one allele, SopB and SifB were chosen for experimental confirmation in murine immunization model. The entire SopB and SifB genes were cloned into DNA vaccine vectors and were administered along with live attenuated Salmonella and it was found that SopB vaccination reduced the bacterial burden of organs by about 5-fold on day 4 and day 8 after challenge with virulent Salmonella and proved to be a more efficient vaccination strategy than live attenuated bacteria alone.
Resumo:
The cross-protection and haemagglutination-inhibition antibodies present in chickens vaccinated with one of the nine currently recognized Kume haemagglutinin serovars of Haemophilus paragallinarum were investigated. The results confirmed the widely accepted dogma that serogroups A, B, and C represent three distinct immunovars. Within Kume serogroup A, there was generally good cross-protection among all four serovars. However, within Kume serogroup C, there was evidence of a reduced level of cross protection between some of the four serovars. The haemagglutination-inhibition antibody levels generally showed the same trend as with the cross-protection results. This study suggests that some apparent field failures of infectious coryza vaccines may be due to a lack of cross-protection between the vaccine strains and the field strains. Our results will help guide the selection of strains for inclusion in infectious coryza vaccines.
Resumo:
Two related, novel, zoonotic paramyxoviruses have been described recently. Hendra virus was first reported in horses and thence humans in Australia in 1994; Nipah virus was first reported in pigs and thence humans in Malaysia in 1998. Human cases of Nipah virus infection, apparently unassociated with infection in livestock, have been reported in Bangladesh since 2001. Species of fruit bats (genus Pteropus ) have been identified as natural hosts of both agents. Anthropogenic changes (habitat loss, hunting) that have impacted the population dynamics of Pteropus species across much of their range are hypothesised to have facilitated emergence. Current strategies for the management of henipaviruses are directed at minimising contact with the natural hosts, monitoring identified intermediate hosts, improving biosecurity on farms, and better disease recognition and diagnosis. Investigation of the emergence and ecology of henipaviruses warrants a broad, cross-disciplinary ecosystem health approach that recognises the critical linkages between human activity, ecological change, and livestock and human health.
Resumo:
Tick resistant cattle could provide a potentially sustainable and environmentally sound method of controlling cattle ticks. Advances in genomics and the availability of the bovine genome sequence open up opportunities to identify useful and selectable genes controlling cattle tick resistance. Using quantitative real-time PCR and the Affymetrix bovine array platform, differences in gene expression of skin biopsies from tick resistant Bos indicus (Brahman) and tick susceptible Bos taurus (Holstein-Friesian) cattle following tick challenge were examined. We identified 138 significant differentially-expressed genes, including several immunological/host defence genes, extracellular matrix proteins, and transcription factors as well as genes involved in lipid metabolism. Three key pathways, represented by genes differentially expressed in resistant Brahmans, were identified; the development of the cell-mediated immune response, structural integrity of the dermis and intracellular Ca 2+ levels. Ca2+, which is implicated in host responses to microbial stimuli, may be required for the enhancement or fine-tuning of transcriptional activation of Ca2+- dependant host defence signalling pathways. Animal Genomics for Animal Health International Symposium, Paris, October 2007: (Proceedings)
Resumo:
A competitive enzyme-linked immunosorbent assay (cELISA) based on a broadly conserved, species-specific, B-cell epitope within the C terminus of Babesia bigemina rhoptry-associated protein 1a was validated for international use. Receiver operating characteristic analysis revealed 16% inhibition as the threshold for a negative result, with an associated specificity of 98.3% and sensitivity of 94.7%. Increasing the threshold to 21% increased the specificity to 100% but modestly decreased the sensitivity to 87.2%. By using 21% inhibition, the positive predictive values ranged from 90.7% (10% prevalence) to 100% (95% prevalence) and the negative predictive values ranged from 97.0% (10% prevalence) to 48.2% (95% prevalence). The assay was able to detect serum antibody as early as 7 days after intravenous inoculation. The cELISA was distributed to five different laboratories along with a reference set of 100 defined bovine serum samples, including known positive, known negative, and field samples. The pairwise concordance among the five laboratories ranged from 100% to 97%, and all kappa values were above 0.8, indicating a high degree of reliability. Overall, the cELISA appears to have the attributes necessary for international application.