967 resultados para Pluto (Dwarf planet)
Resumo:
Includes bibliography
Resumo:
The experiment was carried out aiming to evaluate the gas exchange of dwarf elephant grass genotypes under different hydric conditions, in a randomized design with three replications. Genotypes of dwarf elephant grass (Mott, CNPGL 94-34-3 and CNPGL 92-198-7) were analyzed under two hydric conditions: irrigated (I) and non-irrigated (NI). Differences between treatments I and NI were observed for all genotypes for photosynthesis, stomatal conductance, transpiration and water vapor pressure deficit. Genotype CNPGL 94-34-3 presented highest tolerance to hydric stress, followed by Mott and CNPGL 92-198-7 genotypes. All genotypes presented high photosynthetic rate, under ideal conditions of soil humidity, thus characterizing the analyzed dwarf elephant grass genotypes as plants with high photosynthetic efficiency.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Mutant of dwarf rice (Oryza sativa L.) were treated with three different concentrations of gibberellic acid originated from two sources (Gibberellin and Pro-Gibb) and submitted to the determination of bigger height, in relation to the soil leveI. Mensurations were realized in each seven days at greenhouse conditions under mean temperature of 25°C. lt was concluded that concentrations of 10 mg L-1 of gibberellin originated from Pro-Gibb or Gibberellin was enough to promote a differentiated performance of the test plant. For the study of leaf anatomy Pro-Gibb presented, under all tested concentration, increase of mesophyll thickness in relation to Gibberellin. In this analysis, source and interaction between source and concentration applied promoted significant variations between the mean data.
Resumo:
An analytical expansion of the disturbing function arising from direct planetary perturbations on the motion of satellites is derived. As a Fourier series, it allows the investigation of the secular effects of these direct perturbations, as well as of every argument present in the perturbation. In particular, we construct an analytical model describing the evection resonance between the longitude of pericenter of the satellite orbit and the longitude of a planet, and study briefly its dynamic. The expansion developed in this paper is valid in the case of planar and circular planetary orbits, but not limited in eccentricity or inclination of the satellite orbit. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
Includes bibliography
Resumo:
Aims.We investigate the dynamics of pebbles immersed in a gas disk interacting with a planet on an eccentric orbit. The model has a prescribed gap in the disk around the location of the planetary orbit, as is expected for a giant planet with a mass in the range of 0.1-1 Jupiter masses. The pebbles with sizes in the range of 1 cm to 3 m are placed in a ring outside of the giant planet orbit at distances between 10 and 30 planetary Hill radii. The process of the accumulation of pebbles closer to the gap edge, its possible implication for the planetary accretion, and the importance of the mass and the eccentricity of the planet in this process are the motivations behind the present contribution. Methods. We used the Bulirsch-Stoer numerical algorithm, which is computationally consistent for close approaches, to integrate the Newtonian equations of the planar (2D), elliptical restricted three-body problem. The angular velocity of the gas disk was determined by the appropriate balance between the gravity, centrifugal, and pressure forces, such that it is sub-Keplerian in regions with a negative radial pressure gradient and super-Keplerian where the radial pressure gradient is positive. Results. The results show that there are no trappings in the 1:1 resonance around the L 4 and L5 Lagrangian points for very low planetary eccentricities (e2 < 0.07). The trappings in exterior resonances, in the majority of cases, are because the angular velocity of the disk is super-Keplerian in the gap disk outside of the planetary orbit and because the inward drift is stopped. Furthermore, the semi-major axis location of such trappings depends on the gas pressure profile of the gap (depth) and is a = 1.2 for a planet of 1 MJ. A planet on an eccentric orbit interacts with the pebble layer formed by these resonances. Collisions occur and become important for planetary eccentricity near the present value of Jupiter (e 2 = 0.05). The maximum rate of the collisions onto a planet of 0.1 MJ occurs when the pebble size is 37.5 cm ≤ s < 75 cm; for a planet with the mass of Jupiter, it is15 cm ≤ s < 30 cm. The accretion stops when the pebble size is less than 2 cm and the gas drag dominates the motion. © 2013 ESO.
Resumo:
One of the most important subjects of debate in the formation of the solar system is the origin of Earth's water. Comets have long been considered as the most likely source of the delivery of water to Earth. However, elemental and isotopic arguments suggest a very small contribution from these objects. Other sources have also been proposed, among which local adsorption of water vapor onto dust grains in the primordial nebula and delivery through planetesimals and planetary embryos have become more prominent. However, no sole source of water provides a satisfactory explanation for Earth's water as a whole. In view of that, using numerical simulations, we have developed a compound model incorporating both the principal endogenous and exogenous theories, and investigating their implications for terrestrial planet formation and water delivery. Comets are also considered in the final analysis, as it is likely that at least some of Earth's water has cometary origin. We analyze our results comparing two different water distribution models, and complement our study using the D/H ratio, finding possible relative contributions from each source and focusing on planets formed in the habitable zone. We find that the compound model plays an important role by showing greater advantage in the amount and time of water delivery in Earth-like planets. © 2013. The American Astronomical Society. All rights reserved.
Resumo:
As an additive in in vitro culture media, fruits have a great potential for facilitating economical orchid production because of lower technology requirements and the ease of obtaining raw materials to formulate culture media. We studied the in vitro growth of Cattleya bicolor Lindl. grown in a simplified culture medium supplemented with different kinds of fruit pulp. The experimental design was completely randomised, with eight seedlings per replication and ten replications per treatment, for a total of 80 seedlings per treatment. The culture medium was made using 150 g L -1 of pulp (without peel or seed) from the following fruits: ripe Santa Cruz tomatoes (Solanum lycopersicum L.), dwarf bananas (Musa cavendishii L.) of intermediate ripeness, light green chayote (Sechium edule (Jacq.) Sw), ripe papaya (Carica papaya L.) or green coconut (Cocos nucifera L.).The treatment control was MS 50 %. The treatments and the control were kept in a growth chamber for seven months before evaluating seedling survival percentage, shoot height, number of leaves, rooting percentage, root number, root length and dry masses of shoot and roots. The highest percentages of seedling survival were obtained using MS 50 %, banana and coconut medium. The seedling survival and rooting percentages illustrate that it is possible to emphasise the culture medium MS 50% and the culture medium supplemented with coconut on the most traditional culture medium with banana or tomato pulp. For the in vitro development of Cattleya bicolor Lindl., a simplified culture medium supplemented with coconut pulp is the most suitable for use as an alternative to MS 50%. A simplified culture medium supplemented with papaya pulp is not recommended for the in vitro development of Cattleya bicolor Lindl.
Resumo:
Among the hidden pieces of the giant puzzle, which is our Solar system, the origins of irregularsatellites of the giant planets stand to be explained, while the origins of regular satellites arewell explained by the in situ formation model through matter accretion. Once they are notlocally formed, the most acceptable theory predicts that they had been formed elsewhere andbecame captured later, most likely during the last stage of planet formation. However, underthe restricted three-body problem theory, captures are temporary and there is still no assistedcapture mechanism which is well established. In a previous work, we showed that the capturemechanism of a binary asteroid under the co-planar four-body scenario yielded permanentcaptured objects with an orbital shape which is very similar to those of the actual progradeirregular Jovian satellites. By extending our previous study to a 3D case, here we demonstratethat the capture mechanism of a binary asteroid can produce permanent captures of objects byitself which have very similar orbits to irregular Jovian satellites. Some of the captured objectswithout aid of gas drag or other mechanisms present a triplet: semi-major axis, eccentricityand inclination, which is comparable to the already known irregular Jovian objects. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.
Resumo:
We numerically investigate the dynamics of rotation of several close-in terrestrial exoplanet candidates. In our model, the rotation of the planet is disturbed by the torque of the central star due to the asymmetric equilibrium figure of the planet. We model the shape of the planet by a Jeans spheroid. We use surfaces of section and spectral analysis to explore numerically the rotation phase space of the systems adopting different sets of parameters and initial conditions close to the main spin-orbit resonant states. One of the parameters, the orbital eccentricity, is critically discussed here within the domain of validity of orbital circularization timescales given by tidal models. We show that, depending on some parameters of the system like the radius and mass of the planet, eccentricity etc., the rotation can be strongly perturbed and a chaotic layer around the synchronous state may occupy a significant region of the phase space. 55 Cnc e is an example. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Current evidence of phenological responses to recent climate change is substantially biased towards northern hemisphere temperate regions. Given regional differences in climate change, shifts in phenology will not be uniform across the globe, and conclusions drawn from temperate systems in the northern hemisphere might not be applicable to other regions on the planet. We conduct the largest meta-analysis to date of phenological drivers and trends among southern hemisphere species, assessing 1208 long-term datasets from 89 studies on 347 species. Data were mostly from Australasia (Australia and New Zealand), South America and the Antarctic/subantarctic, and focused primarily on plants and birds. This meta-analysis shows an advance in the timing of spring events (with a strong Australian data bias), although substantial differences in trends were apparent among taxonomic groups and regions. When only statistically significant trends were considered, 82% of terrestrial datasets and 42% of marine datasets demonstrated an advance in phenology. Temperature was most frequently identified as the primary driver of phenological changes; however, in many studies it was the only climate variable considered. When precipitation was examined, it often played a key role but, in contrast with temperature, the direction of phenological shifts in response to precipitation variation was difficult to predict a priori. We discuss how phenological information can inform the adaptive capacity of species, their resilience, and constraints on autonomous adaptation. We also highlight serious weaknesses in past and current data collection and analyses at large regional scales (with very few studies in the tropics or from Africa) and dramatic taxonomic biases. If accurate predictions regarding the general effects of climate change on the biology of organisms are to be made, data collection policies focussing on targeting data-deficient regions and taxa need to be financially and logistically supported. © 2013 Chambers et al.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)