938 resultados para Platelet gel
Resumo:
Aim: To evaluate the effect of photochemical activation of hydrogen peroxide (H2O2) bleaching gel with different wavelengths. Methods: In the study, 80 bovine incisors were used, which were stained in 25% soluble coffee and divided in 4 groups. The initial color was measured with the Easy Shade spectrophotometer by CIE Lab. An experimental 35% H2O2 bleaching gel was used, either with or without the presence of titanium dioxide (TiO2) pigment, associated with two light sources: G1 - Transparent Gel (TG) and no activation; G2 - Gel with TiO2 and activation with blue LED (l=470nm)\laser (Easy Bleach) appliance; G3 - Gel with TiO2 and activation with ultraviolet (l=345nm - UV); G4 - TG and activation with UV. Three applications of the gels were made for 10 min, and in each, 3 activations of 3 min, with interval of 30 s between them. The coloration was evaluated again and the variation in color perception (DE) was calculated. The data were submitted to one-way ANOVA and Tukey's test at 5% significance level. Results: There were significant differences between G1 and G4. The greatest E value was observed in G4 (13.37). There was no statistically significant difference (p>0.05) between the groups 2, 3 and 4. Conclusions: The presence of TiO2 particules in the bleaching gel did not interfere at the bleaching results.
Resumo:
Photoluminescence and photo-excited conductivity data as well as structural analysis are presented for sol-gel SnO2 thin films doped with rare earth ions Eu3+ and Er3+, deposited by sol-gel-dip-coating technique. Photoluminescence spectra are obtained under excitation with various types of monochromatic light sources, such as Kr+, Ar+ and Nd:YAG lasers, besides a Xe lamp plus a selective monochromator with UV grating. The luminescence fine structure is rather different depending on the location of the rare-earth doping, at lattice symmetric sites or segregated at the asymmetric grain boundary layer sites. The decay of photo-excited conductivity also shows different trapping rate depending on the rare-earth concentration. For Er-doped films, above the saturation limit, the evaluated capture energy is higher than for films with concentration below the limit, in good agreement with the different behaviour obtained from luminescence data. For Eu-doped films, the difference in the capture energy is not so evident in these materials with nanoscocopic crystallites, even though the luminescence spectra are rather distinct. It seems that grain boundary scattering plays a major role in Eu-doped SnO2 films. Structural evaluation helps to interpret the electro-optical data. © 2010 IOP Publishing Ltd.
Resumo:
The aim of this study was to evaluate the effect of platelet rich plasma (PRP) associated to bovine inorganic bone (Bio-Oss®; Geistlich) or bioactive glass (Bio-Gran®; Orthovita, Implant Innovations) on bone healing. Bone cavities were prepared in both sides of the mandible of 4 adult male dogs. The cavities were divided into 4 groups according to the filling material as follows: control, PRP, PRP/Bio-Oss, PRP/Bio-Gran. The animals were sacrificed after 120 days and histological and histomorphometrical analysis was performed. The control group showed 80.6% of bone formation in the longitudinal sections at 6 mm depth and 83.7% at 13 mm depth. The transverse sections displayed 74.2% at both 6 and 13 mm depths. The PRP group showed 21.1% of bone formation in the longitudinal sections at 6 mm depth, and 23.1% at 13 mm depth. The transverse sections presented 28.98% of bone formation at 6 mm depth and 41.2% at 13 mm depth. The PRP/Bio-Gran group showed 25.1% of bone formation in the longitudinal sections at 6 mm depth and 30.4% at 13 mm depth. In the transverse sections, the bone formation was 43.0% at 6 mm depth and 39.7% at 13 mm depth. The PRP/Bio-Oss group showed 35.5% of bone formation in the longitudinal sections at 6 mm depth and 42% at 13 mm depth. In the transversal sections, the bone formation was 26.8% and 31.2% at the depths of 6 and 13 mm, respectively. PRP alone or associated with bovine inorganic bone or bioglass had no significant effect in bone healing.
Resumo:
Aim: Root conditioning is aimed at smear layer removal and at dental matrix collagen exposure, which may promote periodontal regeneration. This in vitro study assessed smear layer removal, collagen fiber exposure and the influence of PRP (platelet-rich plasma) application on adhesion of blood cells to the root surface using scanning electron microscopy (SEM). Materials and methods: Scaled root samples (n = 160) were set in five groups and conditioned with: group I - control group (saline solution); group II (EDTA 24%); group III (citric acid 25%); group IV (tetracycline hydrochloride 50 mg/ml); group V (sodium citrate 30%). Eighty samples were assessed using the root surface modification index (RSMI). The other eighty samples were set in two groups. The first group (n = 40) received PRP gel application with a soft brush and the second group (n = 40) received PRP application and then a blood drop. The fibrin clot formation was assessed in the first group and the blood cells adhesion was assessed in the second group using the BEAI (blood elements adhesion index). A previously trained, calibrated, and blind examiner evaluated photomicrographs. Statistical analysis was performed using the Kruskal-Wallis's and Dunn's tests. Results: Group III attained the best results for RSMI and BEAI. Moreover, it was the only group showing fibrin clot formation. Conclusion: Citric acid was the most efficient conditioner for smear layer removal, collagen fiber exposure and blood cell adhesion. Moreover, it was the only group showing fibrin clot formation after PRP application. Clinical significance: This study demonstrated that root conditioning followed by PRP application may favor blood cell adhesion on root surface which may optimize periodontal healing.
Resumo:
Tithonia diversifolia, also known as Mexican arnica, has been used in traditional medicine to treat inflammatory refractory with absence of citotoxicity. The possible health risks associated with the consumption of ingestion of the infusion (tea) plant makes it is necessary to identify the potential pharmacological activity or toxicity to prove certain plants that are acclimated in Brazil. Considering the limited number of pharmacological studies regarding the Tithonia diversifolia, the aim of this study was evaluate the effects of this infusion in platelet aggregation. Venous blood was collected with informed consent from healthy volunteers who denied taking any medication in the previous 14 days. Whole blood was transferred into polypropylene tubes containing one-tenth of final volume of acid citrate dextrose (ACD-C; citric acid 3%, trisodium citrate 4%, glucose 2%; 1:9 v/v) and centrifuged at 200g for 15 min. Platelet rich plasma was added of wash buffer solution (NaCl 140mM, KCl 5mM, sodium citrate 12mM, glucose 10mM and saccharose 12mM; pH 6; 5:7 v/v) and centrifuged at 800g for 12 min at 20°C. Platelet pellet was gently resuspended in Krebs-Ringer solution and counts were performed on a Neubauer chamber. Aggregation assay was carried out with 400 μL of platelet suspension (1.2x10 8 platelets/mL) in a cuvette at 37°C with constant stirring. Platelet suspension was incubated for 3 min with aqueous extract infusion (0.6-20μg/mL) prior to addition of thrombin (100 mU/mL). Percentage of platelet aggregation was recorded with an aggregometer (Chrono-log Lumi-Aggregometer model 560-Ca, USA). Our results show an inhibition of thrombin induced platelet aggregation in the presence of 0.6-20 ug/mL Tithonia diversifolia infusion leaves. The Tithonia diversifolia infusion leaves inhibits thrombin induced washed platelet aggregation.
Resumo:
Objectives: This study aimed to evaluate and correlate the efficacy and cytotoxicity of a 35 % hydrogen peroxide (HP) bleaching gel after different application times on dental enamel. Materials and methods: Enamel/dentin disks in artificial pulp chambers were placed in wells containing culture medium. The following groups were formed: G1, control (no bleaching); G2 and G3, three or one 15-min bleaching applications, respectively; and G4 and G5, three or one 5-min bleaching applications, respectively. Extracts (culture medium with bleaching gel components) were applied for 60 min on cultured odontoblast-like MDPC-23 cells. Cell metabolism (methyl tetrazolium assay) (Kruskal-Wallis/Mann-Whitney; α = 5 %) and cell morphology (scanning electron microscopy) were analyzed immediately after the bleaching procedures and the trans-enamel and trans-dentinal HP diffusion quantified (one-way analysis of variance/Tukey's test; α = 5 %). The alkaline phosphatase (ALP) activity was evaluated 24 h after the contact time of the extracts with the cells (Kruskal-Wallis/Mann-Whitney; α = 5 %). Tooth color was analyzed before and 24 h after bleaching using a spectrophotometer according to the Commission Internationale de l'Eclairage L*a*b* system (Kruskal-Wallis/Mann-Whitney; α = 0.05). Results: Significant difference (p < 0.05) in cell metabolism occurred only between G1 (control, 100 %) and G2 (60.6 %). A significant decrease (p < 0.05) in ALP activity was observed between G2, G3, and G4 in comparison with G1. Alterations on cell morphology were observed in all bleached groups. The highest values of HP diffusion and color alterations were observed for G2, with significant difference among all experimental groups (p < 0.05). G3 and G4 presented intermediate color change and HP diffusion values with no statistically significant differences between them (p > 0.05). The lowest amount of HP diffusion was observed in G5 (p < 0.05), which also exhibited no significant color alteration compared to the control group (p > 0.05). Conclusions: HP diffusion through dental tissues and its cytotoxic effects were proportional to the contact time of the bleaching gel with enamel. However, shorter bleaching times reduced bleaching efficacy. Clinical relevance: Shortening the in-office tooth bleaching time could be an alternative to minimize the cytotoxic effects of this clinical procedure to pulp tissue. However, the reduced time of bleaching agent application on enamel may not provide adequate esthetic outcome. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
This paper reports on the sol-gel preparation and structural and optical characterization of new Er3+-doped SiO2-Nb 2O5 nanocomposite planar waveguides. Erbium-doped (100-x)SiO2-xNb2O5 waveguides were deposited on silica-on-silicon substrates and Si(1 0 0) by the dip-coating technique. The waveguides exhibited uniform refractive index distribution across the thickness, efficient light injection at 1538 nm, and low losses at 632 and 1538 nm. The band-gap values lied between 4.12 eV and 3.55 eV for W1-W5, respectively, showing an excellent transparency in the visible and near infrared region for the waveguides. Fourier Transform Infrared (FTIR) Spectroscopy analysis evidenced SiO2-Nb2O5 nanocomposite formation with controlled phase separation in the films. The HRTEM and XRD analyses revealed Nb2O5 orthorhombic T-phase nanocrystals dispersed in a silica-based host. Photoluminescence (PL) analysis showed a broad band emission at 1531 nm, assigned to the 4I13/2 → 4I15/2 transition of the Er3+ ions present in the nanocomposite, with a full-width at half medium of 48-68 nm, depending on the niobium content and annealing. Hence, these waveguides are excellent candidates for application in integrated optics, especially in EDWA and WDM devices. © 2012 Elsevier B.V. All rights reserved.
Resumo:
To evaluate the bone healing of defects filled with particulate bone graft in combination with platelet-rich plasma (PRP), added with a mixture of calcium chloride and thrombin or just calcium chloride. Two 5-mm bone defects were created in the calvaria of 24 rabbits. Each defect was filled with particulate bone graft and PRP. In one defect the PRP was activated by a mixture of calcium chloride and thrombin; in the other, PRP was activated by calcium chloride only. The animals were euthanized 1, 2, 4, and 8 weeks after the surgeries, and the calvaria was submitted to histologic processing for histomorphometric analysis. The qualitative analysis has shown that both defects presented the same histologic characteristics so that a better organized, more mature, and well-vascularized bone tissue was noticed in the eighth week. A good bone repair was achieved using either the mixture of calcium chloride and thrombin or the calcium chloride alone as a restarting agent of the coagulation process.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the possibility of fluoride solutions applied to enamel to protect pulp cells against the trans-enamel and transdentinal cytotoxicity of a 16% carbamide peroxide (CP) bleaching gel. The CP gel was applied to enamel/ dentin discs adapted to artificial pulp chambers (8 h/day) during 1, 7 or 14 days, followed by fluoride (0.05% or 0.2%) application for 1 min. The extracts (culture medium in contact with dentin) were applied to MDPC-23 cells for 1 h, and cell metabolism (MTT assay), alkaline phosphatase (ALP) activity and cell membrane damage (flow cytometry) were analyzed. Knoop microhardness of enamel was also evaluated. Data were analyzed statistically by ANOVA and Kruskal-Wallis tests (a=0.05). For the MTT assay and ALP activity, significant reductions between the control and the bleached groups were observed (p<0.05). No statistically significant difference occurred among bleached groups (p>0.05), regardless of fluoride application or treatment days. Flow cytometry analysis demonstrated 30% of cell membrane damage in all bleached groups. After 14 days of treatment, the fluoride-treated enamel presented significantly higher microhardness values than the bleached-only group (p<0.05). It was concluded that, regardless of the increase in enamel hardness due to the application of fluoride solutions, the treated enamel surface did not prevent the toxic effects caused by the 16% CP gel to odontoblast-like cells.
Resumo:
Breast implants are medical devices that are used to augment breast size or to reconstruct the breast following mastectomy or to correct a congenital abnormality. Breast implants consist of a silicone outer shell and a filler (most commonly silicone gel or saline). Approximately 5 to 10 million women worldwide have breast implants. Histomorphometric study to evaluate the biological tissue compatibility of silicone implants suitable for plastic surgery and the adverse effects and risks of this material. Thirty Wistar white rats received subcutaneous implants and the revestiment of silicone gel Silimed ®®, and randomized into six groups of five animals each, according to the type of implanted material and the time of sacrifice. Eight areas of 60.11mm2 corresponding to the obtained surgical pieces were analyzed, counting mesenchymal cells, eosinophils, and foreign body giant cells, observing an acceptable biocompatibility in all implants, for subsequent statistical analysis by Tukey test. Silicone gel showed inflammation slightly greater than for other groups, with tissue reactions varying from light to moderate, whose result was the formation of a fibrous capsule around the material, recognized by the organism as a foreign body. Despite frequent local complications and adverse outcomes, this research showed that the silicone and top layer presented an acceptable chronic inflammatory reaction, which did not significantly differ from the control group. In general, it is possible to affirm that silicone gel had acceptable levels of biocompatibility, confirmed the rare presence of foreign body giant cells, and when of the rupture, formed a fibrous capsule around the material, separating the material of the organism. © AVICENA 2013.
Resumo:
Purpose: This study histomorphometrically analyzed the effect of autogenous platelet-rich plasma (PRP) on healing of fresh frozen bone allograft (FFBA) in bony defects in rat calvaria. Materials and Methods: A 5mm-diameter defect was created in the calvarium of 30 rats. Animals were divided into three groups: C (defect was filled by blood clot only), FFBA (defect was filled with 0.01mL of FFBA), and FFBA/PRP (defect was filled with 0.01mL of FFBA combined with 100μL of PRP). All animals were euthanized at 30 days postoperatively. Histomorphometry and histology analyses were performed. Data were statistically analyzed (analysis of variance, Tukey, p<.05). Results: FFBA had a statistically smaller new bone area than groups FFBA/PRP and C. No statistically significant differences were observed between groups FFBA and FFBA/PRP with regard to remaining bone graft particle area. Conclusion: It can be concluded that (1) PRP improved the incorporation of FFBA, increasing the amount of new bone formed; (2) PRP has not influenced the resorption of nonviable particles of the FFBA; and (3) presence of remaining FFBA particles might have accounted for the smaller amount of new bone observed in group FFBA when compared with control group. © 2011 Wiley Periodicals, Inc.
Resumo:
The objective of this research was the preparation of a silica gel functionalized successively with 3-chloropropyltrimethoxysilane (SG-PrCl) and thiourea (SG-Pr-THIO), and its application in adsorption and catalysis. The materials were characterized by 13C and 29Si NMR, FTIR, scanning electron micrographs (SEM), analysis of nitrogen and elemental analysis. Aiming at its application in adsorption, the [3-(thiourea)-propyl] silica gel (SG-Pr-THIO) was tested as an adsorbent for transition-metal ions using a batchwise process. The organofunctionalized surface showed the ability to adsorb the metal ions Cd(ii), Cu(ii), Ni(ii), Pb(ii) and Co(ii) from water, ethanol and acetone. The adsorption isotherms were fitted by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) models. The kinetics of adsorption of metals were performed using three models such as pseudo-first order, pseudo-second order and Elovich. The Langmuir and pseudo-first order models were the most appropriate to describe the adsorption and kinetic data, respectively. With the purpose of application in catalysis, the SG-Pr-THIO was reacted with a Mo(ii) organometallic complex, forming the new material SG-Pr-THIO-Mo. Only a few works in the literature have reported this type of reaction, and none dealt with thiourea and Mo(ii) complexes. The new Mo-silica gel organometallic material was tested as catalyst in the epoxidation of cyclooctene and styrene. © 2013 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.
Resumo:
Background: Cardiovascular diseases remain leaders as the major causes of mortality in Western society. Restoration of the circulation through construction of bypass surgical treatment is regarded as the gold standard treatment of peripheral vascular diseases, and grafts are necessary for this purpose. The great saphenous vein is often not available and synthetic grafts have their limitations. Therefore, new techniques to produce alternative grafts have been developed and, in this sense, tissue engineering is a promising alternative to provide biocompatible grafts. This study objective was to reconstruct the endothelium layer of decellularized vein scaffolds, using mesenchymal stem cells (MSCs) and growth factors obtained from platelets. Methods: Fifteen nonpregnant female adult rabbits were used for all experiments. Adipose tissue and vena cava were obtained and subjected to MSCs isolation and tissue decellularization, respectively. MSCs were subjected to differentiation using endothelial inductor growth factor (EIGF) obtained from human platelet lysates. Immunofluorescence, histological and immunohistochemical analyses were employed for the final characterization of the obtained blood vessel substitute. Results: The scaffolds were successfully decellularized with sodium dodecyl sulfate. MSCs actively adhered at the scaffolds, and through stimulation with EIGF were differentiated into functional endothelial cells, secreting significantly higher quantities of von Willebrand factor (0.85 μg/mL; P < .05) than cells cultivated under the same conditions, without EIGF (0.085 μg/mL). Cells with evident morphologic characteristics of endothelium were seen at the lumen of the scaffolds. These cells also stained positive for fascin protein, which is highly expressed by differentiated endothelial cells. Conclusions: Taken together, the use of decellularized bioscaffold and subcutaneous MSCs seems to be a potential approach to obtain bioengineered blood vessels, in the presence of EIGF supplementation. © 2013 Society for Vascular Surgery.
Resumo:
The chloropropyl silica gel was modified with octa(3-aminopropyl) octasilsesquioxane and characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), spectroscopies, and surface and area porosity. The specific sorption capacity of metallic ions (Cu2+ and Ni2+) increases in the following solvent order: water < ethanol 42% < ethanol < ketone. The high values of the constant (K) in the order of 103 L mol-1 suggested the high adsorbent capacity of the modified silica (SGAPC) for Cu2+ and Ni2+. SGAPC was applied to a separation column and shows recoveries of around 100% of copper in samples of sugar cane spirit, vodka, ginger brandy, and ethanol fuel. © 2013 Devaney Ribeiro Do Carmo et al.