992 resultados para Plasma Progesterone
Resumo:
The relationship between preeclampsia and the renin-angiotensin system (RAS) is poorly understood. Angiotensin I-converting enzyme (ACE) is a key RAS component and plays an important role in blood pressure homeostasis by generating angiotensin II (Ang II) and inactivating the vasodilator angiotensin-(1-7) (Ang-(1-7)). ACE (I/D) polymorphism is characterized by the insertion (I) or deletion (D) of a 287-bp fragment, leading to changes in ACE activity. In the present study, ACE (I/D) polymorphism was correlated with plasma Ang-(1-7) levels and several RAS components in both preeclamptic (N = 20) and normotensive pregnant women (N = 20). The percentage of the ACE DD genotype (60%) in the preeclamptic group was higher than that for the control group (35%); however, this percentage was not statistically significant (Fisher exact test = 2.86, d.f. = 2, P = 0.260). The highest plasma ACE activity was observed in the ACE DD preeclamptic women (58.1 ± 5.06 vs 27.6 ± 3.25 nmol Hip-His Leu-1 min-1 mL-1 in DD control patients; P = 0.0005). Plasma renin activity was markedly reduced in preeclampsia (0.81 ± 0.2 vs 3.43 ± 0.8 ng Ang I mL plasma-1 h-1 in DD normotensive patients; P = 0.0012). A reduced plasma level of Ang-(1-7) was also observed in preeclamptic women (15.6 ± 1.3 vs 22.7 ± 2.5 pg/mL in the DD control group; P = 0.0146). In contrast, plasma Ang II levels were unchanged in preeclamptic patients. The selective changes in the RAS described in the present study suggest that the ACE DD genotype may be used as a marker for susceptibility to preeclampsia.
Resumo:
The aim of the present study was to assess the effects of endurance training on leptin levels and adipose tissue gene expression and their association with insulin, body composition and energy intake. Male Wistar rats were randomly divided into two groups: trained (N = 18) and sedentary controls (N = 20). The trained group underwent swimming training for 9 weeks. Leptin and insulin levels, adiposity and leptin gene expression in epididymal and inguinal adipose tissue were determined after training. There were no differences in energy intake between groups. Trained rats had a decreased final body weight (-10%), relative and total body fat (-36 and -55%, respectively) and insulin levels (-55%) compared with controls (P < 0.05). Although trained animals showed 56% lower leptin levels (2.58 ± 1.05 vs 5.89 ± 2.89 ng/mL in control; P < 0.05), no difference in leptin gene expression in either fat depot was demonstrable between groups. Stepwise multiple regression analysis showed that lower leptin levels in trained rats were due primarily to their lower body fat mass. After adjustment for total body fat, leptin levels were still 20% (P < 0.05) lower in exercised rats. In conclusion, nine weeks of swimming training did not affect leptin gene expression, but did lead to a decrease in leptin levels that was independent of changes in body fat.
Resumo:
Streptococcus mutans membrane-bound P- and F-type ATPases are responsible for H+ extrusion from the cytoplasm thus keeping intracellular pH appropriate for cell metabolism. Toluene-permeabilized bacterial cells have long been used to study total membrane-bound ATPase activity, and to compare the properties of ATPase in situ with those in membrane-rich fractions. The aim of the present research was to determine if toluene permeabilization can significantly modify the activity of membrane-bound ATPase of both F-type and P-type. ATPase activity was assayed discontinuously by measuring phosphate release from ATP as substrate. Treatment of S. mutans membrane fractions with toluene reduced total ATPase activity by approximately 80% and did not allow differentiation between F- and P-type ATPase activities by use of the standard inhibitors vanadate (3 µM) and oligomycin (4 µg/mL). Transmission electron microscopy shows that, after S. mutans cells permeabilization with toluene, bacterial cell wall and plasma membrane are severely injured, causing cytoplasmic leakage. As a consequence, loss of cell viability and disruption of H+ extrusion were observed. These data suggest that treatment of S. mutans with toluene is an efficient method for cell disruption, but care should be taken in the interpretation of ATPase activity when toluene-permeabilized cells are used, because results may not reflect the real P- and F-type ATPase activities present in intact cell membranes. The mild conditions used for the preparation of membrane fractions may be more suitable to study specific ATPase activity in the presence of biological agents, since this method preserves ATPase selectivity for standard inhibitors.
Resumo:
The association of plasma interleukin-6 (IL-6) levels, muscle strength and functional capacity was investigated in a cross-sectional study of community-dwelling elderly women from Belo Horizonte, Brazil. Elderly people who present controlled chronic diseases with no negative impact on physical, psychosocial and mental functionality are considered to be community-dwelling. Psychological and social stress due to unsuccessfully aging can represent a risk for immune system disfunctions. IL-6 levels, isokinetic muscle strength of knee flexion/extension, and functional tests to determine time required to rise from a chair and gait velocity were measured in 57 participants (71.21 ± 7.38 years). Serum levels of IL-6 were measured in duplicate and were performed within one single assay (mouse monoclonal antibody against IL-6; High-Sensitivity, Quantikine®, R & D Systems, USA; intra-assay coefficient of variance = 6.9-7.4%; interassay coefficient of variance = 9.6-6.5%; sensitivity = 0.016-0.110 pg/mL; mean = 0.039 pg/mL). Muscle strength was assessed with the isokinetic dynamometer Biodex System 3 Pro®. After the Shapiro-Wilk normality test was applied, correlations were investigated using Spearman and Kruskal-Wallis tests. Post hoc analysis was performed using the Dunn test. A significant negative correlation was observed between plasma IL-6 levels (1.95 ± 1.77 pg/mL) and muscle strength for knee flexion (70.70 ± 21.14%; r = -0.265; P = 0.047) and extension (271.84 ± 67.85%; r = -0.315; P = 0.017). No significant correlation was observed between IL-6 levels and the functional tests (time to rise from a chair = 14.65 ± 2.82 s and gait velocity = 0.95 ± 0.14 m/s). These results suggest that IL-6 is associated with reduced muscle strength.
Resumo:
Chaperone members of the protein disulfide isomerase family can catalyze the thiol-disulfide exchange reaction with pairs of cysteines. There are 14 protein disulfide isomerase family members, but the ability to catalyze a thiol disulfide exchange reaction has not been demonstrated for all of them. Human endoplasmic reticulum protein chaperone thio-oxidoreductase (ERp18) shows partial oxidative activity as a protein disulfide isomerase. The aim of the present study was to evaluate the participation of ERp18 in gonadotropin-releasing hormone receptor (GnRHR) expression at the plasma membrane. Cos-7 cells were cultured, plated, and transfected with 25 ng (unless indicated) wild-type human GnRHR (hGnRHR) or mutant GnRHR (Cys14Ala and Cys200Ala) and pcDNA3.1 without insert (empty vector) or ERp18 cDNA (75 ng/well), pre-loaded for 18 h with 1 µCi myo-[2-3H(N)]-inositol in 0.25 mL DMEM and treated for 2 h with buserelin. We observed a decrease in maximal inositol phosphate (IP) production in response to buserelin in the cells co-transfected with hGnRHR, and a decrease from 20 to 75 ng of ERp18 compared with cells co-transfected with hGnRHR and empty vector. The decrease in maximal IP was proportional to the amount of ERp18 DNA over the range examined. Mutants (Cys14Ala and Cys200Ala) that could not form the Cys14-Cys200 bridge essential for plasma membrane routing of the hGnRHR did not modify maximal IP production when they were co-transfected with ERp18. These results suggest that ERp18 has a reduction role on disulfide bonds in wild-type hGnRHR folding.
Resumo:
Radiologic breast density is one of the predictive factors for breast cancer and the extent of the density is directly related to postmenopause. However, some patients have dense breasts even during postmenopause. This condition may be explained by the genes that codify for the proteins involved in the biosynthesis, as well as the activity and metabolism of steroid hormones. They are polymorphic, which could explain the variations of individual hormones and, consequently, breast density. The constant need to find markers that may assist in the primary prevention of breast cancer as well as in selecting high risk patients motived this study. We determined the influence of genetic polymorphism of CYP17 (cytochrome P450c17, the gene involved in steroid hormone biosynthesis), GSTM1 (glutathione S-transferase M1, an enzyme involved in estrogen metabolism) and PROGINS (progesterone receptor), for association with high breast density. One hundred and twenty-three postmenopausal patients who were not on hormone therapy and had no clinical or mammographic breast alterations were included in the present study. The results of this study reveal that there was no association between dense breasts and CYP17 or GSTM1. There was a trend, which was not statistically significant (P = 0.084), towards the association between PROGINS polymorphism and dense breasts. However, multivariate logistic regression showed that wild-type PROGINS and mutated CYP17, taken together, resulted in a 4.87 times higher chance of having dense breasts (P = 0.030). In conclusion, in the present study, we were able to identify an association among polymorphisms, involved in estradiol biosyntheses as well as progesterone response, and radiological mammary density.
Resumo:
We investigated the effect of the -278A>C polymorphism in the CYP7A1 gene on the response of plasma lipids to a reduced-fat diet for 6 to 8 weeks in a group of 82 dyslipidemic males with a mean age of 46.0 ± 11.7 years. Individuals who presented at least one high alteration in total cholesterol, low-density lipoprotein cholesterol or triglyceride values were considered to be dyslipidemic. Exclusion criteria were secondary dyslipidemia due to diabetes mellitus, renal, liver, or thyroid disease. None of the subjects were using lipid-lowering medication. Baseline and follow-up lipid concentrations were measured. The genotypes were determined by the digestion of PCR products with the BsaI restriction endonuclease. There were statistically significant reductions in plasma total cholesterol, low-density lipoprotein cholesterol and triglyceride concentrations after dietary intervention. The minor allele C has a frequency of 43%. Carriers of the C allele had significantly lower triglyceride concentrations (P = 0.02) than AA homozygotes. After adjustment of covariates, subjects with the AC and CC genotypes showed a greater reduction in triglyceride concentrations compared to subjects with the AA genotype. Multiple linear regression analyses showed that the AC and CC CYP7A1 genotypes accounted for 5.2 and 6.2% of triglyceride concentration during follow-up and adjusted percent of change of triglyceride concentration, respectively. The present study provides evidence that -278A>C polymorphism in the CYP7A1 gene can modify triglyceride concentrations in response to a reduced fat diet in a dyslipidemic male population. This gene represents a potential locus for a nutrigenetic directed approach.
Resumo:
Female rats are intensely affected by cocaine, with estrogen probably playing an important role in this effect. Progesterone modulates the GABA system and attenuates the effects of cocaine; however, there is no information about its relevance in changing GABA synthesis pathways after cocaine administration to female rats. Our objective was to investigate the influence of progesterone on the effects of repeated cocaine administration on the isoenzymes of glutamic acid decarboxylase (GAD65 and GAD67) mRNA in brain areas involved in the addiction circuitry. Ovariectomized, intact and progesterone replacement-treated female rats received saline or cocaine (30 mg/kg, ip) acutely or repeatedly. GAD isoenzyme mRNA levels were determined in the dorsolateral striatum (dSTR) and prefrontal cortex (PFC) by RT-PCR, showing that repeated, but not acute, cocaine decreased GADs/β-actin mRNA ratio in the dSTR irrespective of the hormonal condition (GAD65: P < 0.001; and GAD67: P = 0.004). In the PFC, repeated cocaine decreased GAD65 and increased GAD67 mRNA ratio (P < 0.05). Progesterone replacement decreased both GAD isoenzymes mRNA ratio after acute cocaine in the PFC (P < 0.001) and repeated cocaine treatment reversed this decrease (P < 0.001). These results suggest that cocaine does not immediately affect GAD mRNA expression, while repeated cocaine decreases both GAD65 and GAD67 mRNA in the dSTR of female rats, independently of their hormonal conditions. In the PFC, repeated cocaine increases the expression of GAD isoenzymes, which were decreased due to progesterone replacement.
Resumo:
We investigated the effect of -174 G/C single-nucleotide polymorphism in the promoter region of the IL6 gene on plasma IL-6 levels and muscle strength, and the relationship between IL-6 levels and muscle strength in elderly women. The sample consisted of 199 elderly residents (73.0 ± 7.8 years old) from rest homes and the community in Belo Horizonte, MG, Brazil. -174 G/C polymorphism was determined by direct sequencing of the product by PCR, and plasma IL-6 concentrations were measured by ELISA. Muscle strength in the knee joint was evaluated using a Biodex System 3 Pro® isokinetic dynamometer. ANCOVA was used to determine the effect of polymorphism on IL-6 levels and muscle strength, and the Pearson correlation coefficient to assess the relationship between IL-6 levels and muscle strength. -174 G/C polymorphism was associated with the plasma IL-6 levels of elderly women (P < 0.01) since homozygotes for the G allele showed high IL-6 levels (GG 3.85 pg/mL, GC + CC 2.13 pg/mL). There was no association of polymorphism on muscle strength (P > 0.05). No association was found between IL-6 levels and knee extensor muscle (r = 0.087, P = 0.306) or flexor (r = -0.011, P = 0.894) strength. An interaction between -174 G/C polymorphism and housing conditions of the sample of elderly women was identified, with the effect of genotype on IL-6 levels being higher in the institutionalized elderly. These results support the evidence that -174 G/C polymorphism of the IL6 gene associates with individual variability of plasma IL-6 levels in elderly women.
Resumo:
Interleukin-10 (IL-10) appears to be the key cytokine for the maintenance of pregnancy and inhibits the secretion of inflammatory cytokines such as tumor necrosis factor-α (TNF-α). However, there are no studies evaluating the profile of these cytokines in diabetic rat models. Thus, our aim was to analyze IL-10 and TNF-α immunostaining in placental tissue and their respective concentrations in maternal plasma during pregnancy in diabetic rats in order to determine whether these cytokines can be used as predictors of alterations in the embryo-fetal organism and in placental development. These parameters were evaluated in non-diabetic (control; N = 15) and Wistar rats with streptozotocin (STZ)-induced diabetes (N = 15). At term, the dams (100 days of life) were killed under anesthesia and plasma and placental samples were collected for IL-10 and TNF-α determinations by ELISA and immunohistochemistry, respectively. The reproductive performance was analyzed. Plasma IL-10 concentrations were reduced in STZ rats compared to controls (7.6 ± 4.5 vs 20.9 ± 8.1 pg/mL). The placental scores of immunostaining intensity did not differ between groups (P > 0.05). Prevalence analysis showed that the IL-10 expression followed TNF-α expression, showing a balance between them. STZ rats also presented impaired reproductive performance and reduced plasma IL-10 levels related to damage during early embryonic development. However, the increased placental IL-10 as a compensatory mechanism for the deficit of maternal regulation permitted embryo development. Therefore, the data suggest that IL-10 can be used as a predictor of changes in the embryo-fetal organism and in placental development in pregnant diabetic rats.
Resumo:
Our objective was to determine lipid peroxidation and nuclear factor-κB (NF-κB) activation in skeletal muscle and the plasma cytokine profile following maximum progressive swimming. Adult male Swiss mice (N = 15) adapted to the aquatic environment were randomly divided into three groups: immediately after exercise (EX1), 3 h after exercise (EX2) and control. Animals from the exercising groups swam until exhaustion, with an initial workload of 2% of body mass attached to the tail. Control mice did not perform any exercise but were kept immersed in water for 20 min. Maximum swimming led to reactive oxygen species (ROS) generation in skeletal muscle, as indicated by increased thiobarbituric acid reactive species (TBARS) levels (4062.67 ±1487.10 vs 19,072.48 ± 8738.16 nmol malondialdehyde (MDA)/mg protein, control vs EX1). Exercise also promoted NF-κB activation in soleus muscle. Cytokine secretion following exercise was marked by increased plasma interleukin-6 (IL-6) levels 3 h post-exercise (P < 0.05). Interleukin-10 (IL-10) levels were reduced following exercise and remained reduced 3 h post-exercise (P < 0.05). Plasma levels of other cytokines investigated, monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ) and interleukin-12 (IL-12), were not altered by exercise. The present findings showed that maximum swimming, as well as other exercise models, led to lipid peroxidation and NF-κB activation in skeletal muscle and increased plasma IL-6 levels. The plasma cytokine response was also marked by reduced IL-10 levels. These results were attributed to exercise type and intensity.
Resumo:
Biomarkers have been identified for pulmonary arterial hypertension, but are less well defined for specific etiologies such as congenital heart disease-associated pulmonary arterial hypertension (CHDPAH). We measured plasma levels of eight microvascular dysfunction markers in CHDPAH, and tested for associations with survival. A cohort of 46 inoperable CHDPAH patients (age 15.0 to 60.2 years, median 33.5 years, female:male 29:17) was prospectively followed for 0.7 to 4.0 years (median 3.6 years). Plasma levels of von Willebrand factor antigen (VWF:Ag), tissue plasminogen activator (t-PA) and its inhibitor (PAI-1), P-selectin, reactive C-protein, tumor necrosis factor alpha, and interleukin-6 and -10 were measured at baseline, and at 30, 90, and 180 days in all subjects. Levels of six of the eight proteins were significantly increased in patients versus controls (13 to 106% increase, P < 0.003). Interleukin-10 level was 2.06 times normal (P = 0.0003; Th2 cytokine response). Increased levels of four proteins (t-PA, PAI-1, P-selectin, and interleukin-6) correlated with disease severity indices (P < 0.05). Seven patients died during follow-up. An average VWF:Ag (mean of four determinations) above the level corresponding to the 95th percentile of controls (139 U/dL) was independently associated with a high risk of death (hazard ratio = 6.56, 95%CI = 1.46 to 29.4, P = 0.014). Thus, in CHDPAH, microvascular dysfunction appears to involve Th2 inflammatory response. Of the biomarkers studied, plasma vWF:Ag was independently associated with survival.
Resumo:
Hormone-mediated quiescence involves the maintenance of a decreased inflammatory responsiveness. However, no study has investigated whether labor induction with prostanoids is associated with changes in the levels of maternal serum hormones. The objective of this study was to determine whether labor induction with dinoprostone is associated with changes in maternal serum progesterone, estradiol, and estriol levels. Blood samples were obtained from 81 pregnant women at term. Sixteen patients had vaginal birth after spontaneous labor, 12 required cesarean section after spontaneous labor and 16 underwent elective cesarean. Thirty-seven patients had labor induction with dinoprostone. Eligible patients received a vaginal insert of dinoprostone (10 mg) and were followed until delivery. Serum progesterone (P4), estradiol (E2) and estriol (E3) levels and changes in P4/E2, P4/E3 and E3/E2 ratios were monitored from admission to immediately before birth, and the association of these measures with the resulting clinical classification outcome (route of delivery and induction responsiveness) was assessed. Progesterone levels decreased from admission to birth in patients who underwent successful labor induction with dinoprostone [vaginal and cesarean birth after induced labor: 23% (P < 0.001) and 18% (P < 0.025) decrease, respectively], but not in those whose induction failed (6.4% decrease, P > 0.05). Estriol and estradiol levels, P4/E2, P4/E3 and E3/E2 ratios did not differ between groups. Successful dinoprostone-induced labor was associated with reduced maternal progesterone levels from induction to birth. While a causal relationship between progesterone decrease and effective dinoprostone-induced labor cannot be established, it is tempting to propose that dinoprostone may contribute to progesterone withdrawal and favor labor induction in humans.
Resumo:
A low concentration of nitric oxide associated with a high concentration of asymmetric dimethylarginine (ADMA) can explain the lack of ischemic cardioprotection observed in the presence of hypercholesterolemia. The objective of the present study was to evaluate the effect of hypercholesterolemia on ischemic pre- and postconditioning and its correlation with plasma concentrations of ADMA. Male Wistar rats (6-8 weeks old) fed a 2% cholesterol diet (n = 21) for 8 weeks were compared to controls (n = 25) and were subjected to experimental myocardial infarction and reperfusion, with ischemic pre- and postconditioning. Total cholesterol and ADMA were measured in plasma before the experimental infarct and the infarct area was quantified. Weight, total cholesterol and plasma ADMA (means ± SE; 1.20 ± 0.06, 1.27 ± 0.08 and 1.20 ± 0.08 vs0.97 ± 0.04, 0.93 ± 0.05 and 0.97 ± 0.04 µM) were higher in animals on the hypercholesterolemic diet than in controls, respectively. Cardioprotection did not reduce infarct size in the hypercholesterolemic animals (pre: 13.55% and post: 8% compared to 7.95% observed in the group subjected only to ischemia and reperfusion), whereas infarct size was reduced in the animals on a normocholesterolemic diet (pre: 8.25% and post: 6.10% compared to 12.31%). Hypercholesterolemia elevated ADMA and eliminated the cardioprotective effects of ischemic pre- and postconditioning in rats.