804 resultados para Pixel-based Classification
Resumo:
The area of Human-Machine Interface is growing fast due to its high importance in all technological systems. The basic idea behind designing human-machine interfaces is to enrich the communication with the technology in a natural and easy way. Gesture interfaces are a good example of transparent interfaces. Such interfaces must identify properly the action the user wants to perform, so the proper gesture recognition is of the highest importance. However, most of the systems based on gesture recognition use complex methods requiring high-resource devices. In this work, we propose to model gestures capturing their temporal properties, which significantly reduce storage requirements, and use clustering techniques, namely self-organizing maps and unsupervised genetic algorithm, for their classification. We further propose to train a certain number of algorithms with different parameters and combine their decision using majority voting in order to decrease the false positive rate. The main advantage of the approach is its simplicity, which enables the implementation using devices with limited resources, and therefore low cost. The testing results demonstrate its high potential.
Resumo:
In this paper, we propose a system for authenticating local bee pollen against fraudulent samples using image processing and classification techniques. Our system is based on the colour properties of bee pollen loads and the use of one-class classifiers to reject unknown pollen samples. The latter classification techniques allow us to tackle the major difficulty of the problem, the existence of many possible fraudulent pollen types. Also presented is a multi-classifier model with an ambiguity discovery process to fuse the output of the one-class classifiers. The method is validated by authenticating Spanish bee pollen types, the overall accuracy of the final system of being 94%. Therefore, the system is able to rapidly reject the non-local pollen samples with inexpensive hardware and without the need to send the product to the laboratory.
Resumo:
Satellite image data have become an important source of information for monitoring vegetation and mapping land cover at several scales. Beside this, the distribution and phenology of vegetation is largely associated with climate, terrain characteristics and human activity. Various vegetation indices have been developed for qualitative and quantitative assessment of vegetation using remote spectral measurements. In particular, sensors with spectral bands in the red (RED) and near-infrared (NIR) lend themselves well to vegetation monitoring and based on them [(NIR - RED) / (NIR + RED)] Normalized Difference Vegetation Index (NDVI) has been widespread used. Given that the characteristics of spectral bands in RED and NIR vary distinctly from sensor to sensor, NDVI values based on data from different instruments will not be directly comparable. The spatial resolution also varies significantly between sensors, as well as within a given scene in the case of wide-angle and oblique sensors. As a result, NDVI values will vary according to combinations of the heterogeneity and scale of terrestrial surfaces and pixel footprint sizes. Therefore, the question arises as to the impact of differences in spectral and spatial resolutions on vegetation indices like the NDVI. The aim of this study is to establish a comparison between two different sensors in their NDVI values at different spatial resolutions.
Resumo:
This paper present an environmental contingency forecasting tool based on Neural Networks (NN). Forecasting tool analyzes every hour and daily Sulphur Dioxide (SO2) concentrations and Meteorological data time series. Pollutant concentrations and meteorological variables are self-organized applying a Self-organizing Map (SOM) NN in different classes. Classes are used in training phase of a General Regression Neural Network (GRNN) classifier to provide an air quality forecast. In this case a time series set obtained from Environmental Monitoring Network (EMN) of the city of Salamanca, Guanajuato, México is used. Results verify the potential of this method versus other statistical classification methods and also variables correlation is solved.
Resumo:
The deployment of nodes in Wireless Sensor Networks (WSNs) arises as one of the biggest challenges of this field, which involves in distributing a large number of embedded systems to fulfill a specific application. The connectivity of WSNs is difficult to estimate due to the irregularity of the physical environment and affects the WSN designers? decision on deploying sensor nodes. Therefore, in this paper, a new method is proposed to enhance the efficiency and accuracy on ZigBee propagation simulation in indoor environments. The method consists of two steps: automatic 3D indoor reconstruction and 3D ray-tracing based radio simulation. The automatic 3D indoor reconstruction employs unattended image classification algorithm and image vectorization algorithm to build the environment database accurately, which also significantly reduces time and efforts spent on non-radio propagation issue. The 3D ray tracing is developed by using kd-tree space division algorithm and a modified polar sweep algorithm, which accelerates the searching of rays over the entire space. Signal propagation model is proposed for the ray tracing engine by considering both the materials of obstacles and the impact of positions along the ray path of radio. Three different WSN deployments are realized in the indoor environment of an office and the results are verified to be accurate. Experimental results also indicate that the proposed method is efficient in pre-simulation strategy and 3D ray searching scheme and is suitable for different indoor environments.
Resumo:
Hoy en día, con la evolución continua y rápida de las tecnologías de la información y los dispositivos de computación, se recogen y almacenan continuamente grandes volúmenes de datos en distintos dominios y a través de diversas aplicaciones del mundo real. La extracción de conocimiento útil de una cantidad tan enorme de datos no se puede realizar habitualmente de forma manual, y requiere el uso de técnicas adecuadas de aprendizaje automático y de minería de datos. La clasificación es una de las técnicas más importantes que ha sido aplicada con éxito a varias áreas. En general, la clasificación se compone de dos pasos principales: en primer lugar, aprender un modelo de clasificación o clasificador a partir de un conjunto de datos de entrenamiento, y en segundo lugar, clasificar las nuevas instancias de datos utilizando el clasificador aprendido. La clasificación es supervisada cuando todas las etiquetas están presentes en los datos de entrenamiento (es decir, datos completamente etiquetados), semi-supervisada cuando sólo algunas etiquetas son conocidas (es decir, datos parcialmente etiquetados), y no supervisada cuando todas las etiquetas están ausentes en los datos de entrenamiento (es decir, datos no etiquetados). Además, aparte de esta taxonomía, el problema de clasificación se puede categorizar en unidimensional o multidimensional en función del número de variables clase, una o más, respectivamente; o también puede ser categorizado en estacionario o cambiante con el tiempo en función de las características de los datos y de la tasa de cambio subyacente. A lo largo de esta tesis, tratamos el problema de clasificación desde tres perspectivas diferentes, a saber, clasificación supervisada multidimensional estacionaria, clasificación semisupervisada unidimensional cambiante con el tiempo, y clasificación supervisada multidimensional cambiante con el tiempo. Para llevar a cabo esta tarea, hemos usado básicamente los clasificadores Bayesianos como modelos. La primera contribución, dirigiéndose al problema de clasificación supervisada multidimensional estacionaria, se compone de dos nuevos métodos de aprendizaje de clasificadores Bayesianos multidimensionales a partir de datos estacionarios. Los métodos se proponen desde dos puntos de vista diferentes. El primer método, denominado CB-MBC, se basa en una estrategia de envoltura de selección de variables que es voraz y hacia delante, mientras que el segundo, denominado MB-MBC, es una estrategia de filtrado de variables con una aproximación basada en restricciones y en el manto de Markov. Ambos métodos han sido aplicados a dos problemas reales importantes, a saber, la predicción de los inhibidores de la transcriptasa inversa y de la proteasa para el problema de infección por el virus de la inmunodeficiencia humana tipo 1 (HIV-1), y la predicción del European Quality of Life-5 Dimensions (EQ-5D) a partir de los cuestionarios de la enfermedad de Parkinson con 39 ítems (PDQ-39). El estudio experimental incluye comparaciones de CB-MBC y MB-MBC con los métodos del estado del arte de la clasificación multidimensional, así como con métodos comúnmente utilizados para resolver el problema de predicción de la enfermedad de Parkinson, a saber, la regresión logística multinomial, mínimos cuadrados ordinarios, y mínimas desviaciones absolutas censuradas. En ambas aplicaciones, los resultados han sido prometedores con respecto a la precisión de la clasificación, así como en relación al análisis de las estructuras gráficas que identifican interacciones conocidas y novedosas entre las variables. La segunda contribución, referida al problema de clasificación semi-supervisada unidimensional cambiante con el tiempo, consiste en un método nuevo (CPL-DS) para clasificar flujos de datos parcialmente etiquetados. Los flujos de datos difieren de los conjuntos de datos estacionarios en su proceso de generación muy rápido y en su aspecto de cambio de concepto. Es decir, los conceptos aprendidos y/o la distribución subyacente están probablemente cambiando y evolucionando en el tiempo, lo que hace que el modelo de clasificación actual sea obsoleto y deba ser actualizado. CPL-DS utiliza la divergencia de Kullback-Leibler y el método de bootstrapping para cuantificar y detectar tres tipos posibles de cambio: en las predictoras, en la a posteriori de la clase o en ambas. Después, si se detecta cualquier cambio, un nuevo modelo de clasificación se aprende usando el algoritmo EM; si no, el modelo de clasificación actual se mantiene sin modificaciones. CPL-DS es general, ya que puede ser aplicado a varios modelos de clasificación. Usando dos modelos diferentes, el clasificador naive Bayes y la regresión logística, CPL-DS se ha probado con flujos de datos sintéticos y también se ha aplicado al problema real de la detección de código malware, en el cual los nuevos ficheros recibidos deben ser continuamente clasificados en malware o goodware. Los resultados experimentales muestran que nuestro método es efectivo para la detección de diferentes tipos de cambio a partir de los flujos de datos parcialmente etiquetados y también tiene una buena precisión de la clasificación. Finalmente, la tercera contribución, sobre el problema de clasificación supervisada multidimensional cambiante con el tiempo, consiste en dos métodos adaptativos, a saber, Locally Adpative-MB-MBC (LA-MB-MBC) y Globally Adpative-MB-MBC (GA-MB-MBC). Ambos métodos monitorizan el cambio de concepto a lo largo del tiempo utilizando la log-verosimilitud media como métrica y el test de Page-Hinkley. Luego, si se detecta un cambio de concepto, LA-MB-MBC adapta el actual clasificador Bayesiano multidimensional localmente alrededor de cada nodo cambiado, mientras que GA-MB-MBC aprende un nuevo clasificador Bayesiano multidimensional. El estudio experimental realizado usando flujos de datos sintéticos multidimensionales indica los méritos de los métodos adaptativos propuestos. ABSTRACT Nowadays, with the ongoing and rapid evolution of information technology and computing devices, large volumes of data are continuously collected and stored in different domains and through various real-world applications. Extracting useful knowledge from such a huge amount of data usually cannot be performed manually, and requires the use of adequate machine learning and data mining techniques. Classification is one of the most important techniques that has been successfully applied to several areas. Roughly speaking, classification consists of two main steps: first, learn a classification model or classifier from an available training data, and secondly, classify the new incoming unseen data instances using the learned classifier. Classification is supervised when the whole class values are present in the training data (i.e., fully labeled data), semi-supervised when only some class values are known (i.e., partially labeled data), and unsupervised when the whole class values are missing in the training data (i.e., unlabeled data). In addition, besides this taxonomy, the classification problem can be categorized into uni-dimensional or multi-dimensional depending on the number of class variables, one or more, respectively; or can be also categorized into stationary or streaming depending on the characteristics of the data and the rate of change underlying it. Through this thesis, we deal with the classification problem under three different settings, namely, supervised multi-dimensional stationary classification, semi-supervised unidimensional streaming classification, and supervised multi-dimensional streaming classification. To accomplish this task, we basically used Bayesian network classifiers as models. The first contribution, addressing the supervised multi-dimensional stationary classification problem, consists of two new methods for learning multi-dimensional Bayesian network classifiers from stationary data. They are proposed from two different points of view. The first method, named CB-MBC, is based on a wrapper greedy forward selection approach, while the second one, named MB-MBC, is a filter constraint-based approach based on Markov blankets. Both methods are applied to two important real-world problems, namely, the prediction of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors, and the prediction of the European Quality of Life-5 Dimensions (EQ-5D) from 39-item Parkinson’s Disease Questionnaire (PDQ-39). The experimental study includes comparisons of CB-MBC and MB-MBC against state-of-the-art multi-dimensional classification methods, as well as against commonly used methods for solving the Parkinson’s disease prediction problem, namely, multinomial logistic regression, ordinary least squares, and censored least absolute deviations. For both considered case studies, results are promising in terms of classification accuracy as well as regarding the analysis of the learned MBC graphical structures identifying known and novel interactions among variables. The second contribution, addressing the semi-supervised uni-dimensional streaming classification problem, consists of a novel method (CPL-DS) for classifying partially labeled data streams. Data streams differ from the stationary data sets by their highly rapid generation process and their concept-drifting aspect. That is, the learned concepts and/or the underlying distribution are likely changing and evolving over time, which makes the current classification model out-of-date requiring to be updated. CPL-DS uses the Kullback-Leibler divergence and bootstrapping method to quantify and detect three possible kinds of drift: feature, conditional or dual. Then, if any occurs, a new classification model is learned using the expectation-maximization algorithm; otherwise, the current classification model is kept unchanged. CPL-DS is general as it can be applied to several classification models. Using two different models, namely, naive Bayes classifier and logistic regression, CPL-DS is tested with synthetic data streams and applied to the real-world problem of malware detection, where the new received files should be continuously classified into malware or goodware. Experimental results show that our approach is effective for detecting different kinds of drift from partially labeled data streams, as well as having a good classification performance. Finally, the third contribution, addressing the supervised multi-dimensional streaming classification problem, consists of two adaptive methods, namely, Locally Adaptive-MB-MBC (LA-MB-MBC) and Globally Adaptive-MB-MBC (GA-MB-MBC). Both methods monitor the concept drift over time using the average log-likelihood score and the Page-Hinkley test. Then, if a drift is detected, LA-MB-MBC adapts the current multi-dimensional Bayesian network classifier locally around each changed node, whereas GA-MB-MBC learns a new multi-dimensional Bayesian network classifier from scratch. Experimental study carried out using synthetic multi-dimensional data streams shows the merits of both proposed adaptive methods.
Resumo:
El objeto de esta Tesis doctoral es el desarrollo de una metodologia para la deteccion automatica de anomalias a partir de datos hiperespectrales o espectrometria de imagen, y su cartografiado bajo diferentes condiciones tipologicas de superficie y terreno. La tecnologia hiperespectral o espectrometria de imagen ofrece la posibilidad potencial de caracterizar con precision el estado de los materiales que conforman las diversas superficies en base a su respuesta espectral. Este estado suele ser variable, mientras que las observaciones se producen en un numero limitado y para determinadas condiciones de iluminacion. Al aumentar el numero de bandas espectrales aumenta tambien el numero de muestras necesarias para definir espectralmente las clases en lo que se conoce como Maldicion de la Dimensionalidad o Efecto Hughes (Bellman, 1957), muestras habitualmente no disponibles y costosas de obtener, no hay mas que pensar en lo que ello implica en la Exploracion Planetaria. Bajo la definicion de anomalia en su sentido espectral como la respuesta significativamente diferente de un pixel de imagen respecto de su entorno, el objeto central abordado en la Tesis estriba primero en como reducir la dimensionalidad de la informacion en los datos hiperespectrales, discriminando la mas significativa para la deteccion de respuestas anomalas, y segundo, en establecer la relacion entre anomalias espectrales detectadas y lo que hemos denominado anomalias informacionales, es decir, anomalias que aportan algun tipo de informacion real de las superficies o materiales que las producen. En la deteccion de respuestas anomalas se asume un no conocimiento previo de los objetivos, de tal manera que los pixeles se separan automaticamente en funcion de su informacion espectral significativamente diferenciada respecto de un fondo que se estima, bien de manera global para toda la escena, bien localmente por segmentacion de la imagen. La metodologia desarrollada se ha centrado en la implicacion de la definicion estadistica del fondo espectral, proponiendo un nuevo enfoque que permite discriminar anomalias respecto fondos segmentados en diferentes grupos de longitudes de onda del espectro, explotando la potencialidad de separacion entre el espectro electromagnetico reflectivo y emisivo. Se ha estudiado la eficiencia de los principales algoritmos de deteccion de anomalias, contrastando los resultados del algoritmo RX (Reed and Xiaoli, 1990) adoptado como estandar por la comunidad cientifica, con el metodo UTD (Uniform Targets Detector), su variante RXD-UTD, metodos basados en subespacios SSRX (Subspace RX) y metodo basados en proyecciones de subespacios de imagen, como OSPRX (Orthogonal Subspace Projection RX) y PP (Projection Pursuit). Se ha desarrollado un nuevo metodo, evaluado y contrastado por los anteriores, que supone una variacion de PP y describe el fondo espectral mediante el analisis discriminante de bandas del espectro electromagnetico, separando las anomalias con el algortimo denominado Detector de Anomalias de Fondo Termico o DAFT aplicable a sensores que registran datos en el espectro emisivo. Se han evaluado los diferentes metodos de deteccion de anomalias en rangos del espectro electromagnetico del visible e infrarrojo cercano (Visible and Near Infrared-VNIR), infrarrojo de onda corta (Short Wavelenght Infrared-SWIR), infrarrojo medio (Meadle Infrared-MIR) e infrarrojo termico (Thermal Infrared-TIR). La respuesta de las superficies en las distintas longitudes de onda del espectro electromagnetico junto con su entorno, influyen en el tipo y frecuencia de las anomalias espectrales que puedan provocar. Es por ello que se han utilizado en la investigacion cubos de datos hiperepectrales procedentes de los sensores aeroportados cuya estrategia y diseno en la construccion espectrometrica de la imagen difiere. Se han evaluado conjuntos de datos de test de los sensores AHS (Airborne Hyperspectral System), HyMAP Imaging Spectrometer, CASI (Compact Airborne Spectrographic Imager), AVIRIS (Airborne Visible Infrared Imaging Spectrometer), HYDICE (Hyperspectral Digital Imagery Collection Experiment) y MASTER (MODIS/ASTER Simulator). Se han disenado experimentos sobre ambitos naturales, urbanos y semiurbanos de diferente complejidad. Se ha evaluado el comportamiento de los diferentes detectores de anomalias a traves de 23 tests correspondientes a 15 areas de estudio agrupados en 6 espacios o escenarios: Urbano - E1, Semiurbano/Industrial/Periferia Urbana - E2, Forestal - E3, Agricola - E4, Geologico/Volcanico - E5 y Otros Espacios Agua, Nubes y Sombras - E6. El tipo de sensores evaluados se caracteriza por registrar imagenes en un amplio rango de bandas, estrechas y contiguas, del espectro electromagnetico. La Tesis se ha centrado en el desarrollo de tecnicas que permiten separar y extraer automaticamente pixeles o grupos de pixeles cuya firma espectral difiere de manera discriminante de las que tiene alrededor, adoptando para ello como espacio muestral parte o el conjunto de las bandas espectrales en las que ha registrado radiancia el sensor hiperespectral. Un factor a tener en cuenta en la investigacion ha sido el propio instrumento de medida, es decir, la caracterizacion de los distintos subsistemas, sensores imagen y auxiliares, que intervienen en el proceso. Para poder emplear cuantitativamente los datos medidos ha sido necesario definir las relaciones espaciales y espectrales del sensor con la superficie observada y las potenciales anomalias y patrones objetivos de deteccion. Se ha analizado la repercusion que en la deteccion de anomalias tiene el tipo de sensor, tanto en su configuracion espectral como en las estrategias de diseno a la hora de registrar la radiacion prodecente de las superficies, siendo los dos tipos principales de sensores estudiados los barredores o escaneres de espejo giratorio (whiskbroom) y los barredores o escaneres de empuje (pushbroom). Se han definido distintos escenarios en la investigacion, lo que ha permitido abarcar una amplia variabilidad de entornos geomorfologicos y de tipos de coberturas, en ambientes mediterraneos, de latitudes medias y tropicales. En resumen, esta Tesis presenta una tecnica de deteccion de anomalias para datos hiperespectrales denominada DAFT en su variante de PP, basada en una reduccion de la dimensionalidad proyectando el fondo en un rango de longitudes de onda del espectro termico distinto de la proyeccion de las anomalias u objetivos sin firma espectral conocida. La metodologia propuesta ha sido probada con imagenes hiperespectrales reales de diferentes sensores y en diferentes escenarios o espacios, por lo tanto de diferente fondo espectral tambien, donde los resultados muestran los beneficios de la aproximacion en la deteccion de una gran variedad de objetos cuyas firmas espectrales tienen suficiente desviacion respecto del fondo. La tecnica resulta ser automatica en el sentido de que no hay necesidad de ajuste de parametros, dando resultados significativos en todos los casos. Incluso los objetos de tamano subpixel, que no pueden distinguirse a simple vista por el ojo humano en la imagen original, pueden ser detectados como anomalias. Ademas, se realiza una comparacion entre el enfoque propuesto, la popular tecnica RX y otros detectores tanto en su modalidad global como local. El metodo propuesto supera a los demas en determinados escenarios, demostrando su capacidad para reducir la proporcion de falsas alarmas. Los resultados del algoritmo automatico DAFT desarrollado, han demostrado la mejora en la definicion cualitativa de las anomalias espectrales que identifican a entidades diferentes en o bajo superficie, reemplazando para ello el modelo clasico de distribucion normal con un metodo robusto que contempla distintas alternativas desde el momento mismo de la adquisicion del dato hiperespectral. Para su consecucion ha sido necesario analizar la relacion entre parametros biofisicos, como la reflectancia y la emisividad de los materiales, y la distribucion espacial de entidades detectadas respecto de su entorno. Por ultimo, el algoritmo DAFT ha sido elegido como el mas adecuado para sensores que adquieren datos en el TIR, ya que presenta el mejor acuerdo con los datos de referencia, demostrando una gran eficacia computacional que facilita su implementacion en un sistema de cartografia que proyecte de forma automatica en un marco geografico de referencia las anomalias detectadas, lo que confirma un significativo avance hacia un sistema en lo que se denomina cartografia en tiempo real. The aim of this Thesis is to develop a specific methodology in order to be applied in automatic detection anomalies processes using hyperspectral data also called hyperspectral scenes, and to improve the classification processes. Several scenarios, areas and their relationship with surfaces and objects have been tested. The spectral characteristics of reflectance parameter and emissivity in the pattern recognition of urban materials in several hyperspectral scenes have also been tested. Spectral ranges of the visible-near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) from hyperspectral data cubes of AHS (Airborne Hyperspectral System), HyMAP Imaging Spectrometer, CASI (Compact Airborne Spectrographic Imager), AVIRIS (Airborne Visible Infrared Imaging Spectrometer), HYDICE (Hyperspectral Digital Imagery Collection Experiment) and MASTER (MODIS/ASTER Simulator) have been used in this research. It is assumed that there is not prior knowledge of the targets in anomaly detection. Thus, the pixels are automatically separated according to their spectral information, significantly differentiated with respect to a background, either globally for the full scene, or locally by the image segmentation. Several experiments on different scenarios have been designed, analyzing the behavior of the standard RX anomaly detector and different methods based on subspace, image projection and segmentation-based anomaly detection methods. Results and their consequences in unsupervised classification processes are discussed. Detection of spectral anomalies aims at extracting automatically pixels that show significant responses in relation of their surroundings. This Thesis deals with the unsupervised technique of target detection, also called anomaly detection. Since this technique assumes no prior knowledge about the target or the statistical characteristics of the data, the only available option is to look for objects that are differentiated from the background. Several methods have been developed in the last decades, allowing a better understanding of the relationships between the image dimensionality and the optimization of search procedures as well as the subpixel differentiation of the spectral mixture and its implications in anomalous responses. In other sense, image spectrometry has proven to be efficient in the characterization of materials, based on statistical methods using a specific reflection and absorption bands. Spectral configurations in the VNIR, SWIR and TIR have been successfully used for mapping materials in different urban scenarios. There has been an increasing interest in the use of high resolution data (both spatial and spectral) to detect small objects and to discriminate surfaces in areas with urban complexity. This has come to be known as target detection which can be either supervised or unsupervised. In supervised target detection, algorithms lean on prior knowledge, such as the spectral signature. The detection process for matching signatures is not straightforward due to the complications of converting data airborne sensor with material spectra in the ground. This could be further complicated by the large number of possible objects of interest, as well as uncertainty as to the reflectance or emissivity of these objects and surfaces. An important objective in this research is to establish relationships that allow linking spectral anomalies with what can be called informational anomalies and, therefore, identify information related to anomalous responses in some places rather than simply spotting differences from the background. The development in recent years of new hyperspectral sensors and techniques, widen the possibilities for applications in remote sensing of the Earth. Remote sensing systems measure and record electromagnetic disturbances that the surveyed objects induce in their surroundings, by means of different sensors mounted on airborne or space platforms. Map updating is important for management and decisions making people, because of the fast changes that usually happen in natural, urban and semi urban areas. It is necessary to optimize the methodology for obtaining the best from remote sensing techniques from hyperspectral data. The first problem with hyperspectral data is to reduce the dimensionality, keeping the maximum amount of information. Hyperspectral sensors augment considerably the amount of information, this allows us to obtain a better precision on the separation of material but at the same time it is necessary to calculate a bigger number of parameters, and the precision lowers with the increase in the number of bands. This is known as the Hughes effects (Bellman, 1957) . Hyperspectral imagery allows us to discriminate between a huge number of different materials however some land and urban covers are made up with similar material and respond similarly which produces confusion in the classification. The training and the algorithm used for mapping are also important for the final result and some properties of thermal spectrum for detecting land cover will be studied. In summary, this Thesis presents a new technique for anomaly detection in hyperspectral data called DAFT, as a PP's variant, based on dimensionality reduction by projecting anomalies or targets with unknown spectral signature to the background, in a range thermal spectrum wavelengths. The proposed methodology has been tested with hyperspectral images from different imaging spectrometers corresponding to several places or scenarios, therefore with different spectral background. The results show the benefits of the approach to the detection of a variety of targets whose spectral signatures have sufficient deviation in relation to the background. DAFT is an automated technique in the sense that there is not necessary to adjust parameters, providing significant results in all cases. Subpixel anomalies which cannot be distinguished by the human eye, on the original image, however can be detected as outliers due to the projection of the VNIR end members with a very strong thermal contrast. Furthermore, a comparison between the proposed approach and the well-known RX detector is performed at both modes, global and local. The proposed method outperforms the existents in particular scenarios, demonstrating its performance to reduce the probability of false alarms. The results of the automatic algorithm DAFT have demonstrated improvement in the qualitative definition of the spectral anomalies by replacing the classical model by the normal distribution with a robust method. For their achievement has been necessary to analyze the relationship between biophysical parameters such as reflectance and emissivity, and the spatial distribution of detected entities with respect to their environment, as for example some buried or semi-buried materials, or building covers of asbestos, cellular polycarbonate-PVC or metal composites. Finally, the DAFT method has been chosen as the most suitable for anomaly detection using imaging spectrometers that acquire them in the thermal infrared spectrum, since it presents the best results in comparison with the reference data, demonstrating great computational efficiency that facilitates its implementation in a mapping system towards, what is called, Real-Time Mapping.
Resumo:
Acquired brain injury (ABI) 1-2 refers to any brain damage occurring after birth. It usually causes certain damage to portions of the brain. ABI may result in a significant impairment of an individuals physical, cognitive and/or psychosocial functioning. The main causes are traumatic brain injury (TBI), cerebrovascular accident (CVA) and brain tumors. The main consequence of ABI is a dramatic change in the individuals daily life. This change involves a disruption of the family, a loss of future income capacity and an increase of lifetime cost. One of the main challenges in neurorehabilitation is to obtain a dysfunctional profile of each patient in order to personalize the treatment. This paper proposes a system to generate a patient s dysfunctional profile by integrating theoretical, structural and neuropsychological information on a 3D brain imaging-based model. The main goal of this dysfunctional profile is to help therapists design the most suitable treatment for each patient. At the same time, the results obtained are a source of clinical evidence to improve the accuracy and quality of our rehabilitation system. Figure 1 shows the diagram of the system. This system is composed of four main modules: image-based extraction of parameters, theoretical modeling, classification and co-registration and visualization module.
Resumo:
Changing factors (mainly traffic intensity and weather conditions) affecting road conditions require a suitable optimal speed at any time. To solve this problem, variable speed limit systems (VSL) ? as opposed to fixed limits ? have been developed in recent decades. This term has included a number of speed management systems, most notably dynamic speed limits (DSL). In order to avoid the indiscriminate use of both terms in the literature, this paper proposes a simple classification and offers a review of some experiences, how their effects are evaluated and their results This study also presents a key indicator, which measures the speed homogeneity and a methodology to obtain the data based on floating cars and GPS technology applying it to a case study on a section of the M30 urban motorway in Madrid (Spain).
Resumo:
Durante los últimos años la tendencia en el sector de las telecomunicaciones ha sido un aumento y diversificación en la transmisión de voz, video y fundamentalmente de datos. Para conseguir alcanzar las tasas de transmisión requeridas, los nuevos estándares de comunicaciones requieren un mayor ancho de banda y tienen un mayor factor de pico, lo cual influye en el bajo rendimiento del amplificador de radiofrecuencia (RFPA). Otro factor que ha influido en el bajo rendimiento es el diseño del amplificador de radiofrecuencia. Tradicionalmente se han utilizado amplificadores lineales por su buen funcionamiento. Sin embargo, debido al elevado factor de pico de las señales transmitidas, el rendimiento de este tipo de amplificadores es bajo. El bajo rendimiento del sistema conlleva desventajas adicionales como el aumento del coste y del tamaño del sistema de refrigeración, como en el caso de una estación base, o como la reducción del tiempo de uso y un mayor calentamiento del equipo para sistemas portátiles alimentados con baterías. Debido a estos factores, se han desarrollado durante las últimas décadas varias soluciones para aumentar el rendimiento del RFPA como la técnica de Outphasing, combinadores de potencia o la técnica de Doherty. Estas soluciones mejoran las prestaciones del RFPA y en algún caso han sido ampliamente utilizados comercialmente como la técnica de Doherty, que alcanza rendimientos hasta del 50% para el sistema completo para anchos de banda de hasta 20MHz. Pese a las mejoras obtenidas con estas soluciones, los mayores rendimientos del sistema se obtienen para soluciones basadas en la modulación de la tensión de alimentación del amplificador de potencia como “Envelope Tracking” o “EER”. La técnica de seguimiento de envolvente o “Envelope Tracking” está basada en la modulación de la tensión de alimentación de un amplificador lineal de potencia para obtener una mejora en el rendimiento en el sistema comparado a una solución con una tensión de alimentación constante. Para la implementación de esta técnica se necesita una etapa adicional, el amplificador de envolvente, que añade complejidad al amplificador de radiofrecuencia. En un amplificador diseñado con esta técnica, se aumentan las pérdidas debido a la etapa adicional que supone el amplificador de envolvente pero a su vez disminuyen las pérdidas en el amplificador de potencia. Si el diseño se optimiza adecuadamente, puede conseguirse un aumento global en el rendimiento del sistema superior al conseguido con las técnicas mencionadas anteriormente. Esta técnica presenta ventajas en el diseño del amplificador de envolvente, ya que el ancho de banda requerido puede ser menor que el ancho de banda de la señal de envolvente si se optimiza adecuadamente el diseño. Adicionalmente, debido a que la sincronización entre la señal de envolvente y de fase no tiene que ser perfecta, el proceso de integración conlleva ciertas ventajas respecto a otras técnicas como EER. La técnica de eliminación y restauración de envolvente, llamada EER o técnica de Kahn está basada en modulación simultánea de la envolvente y la fase de la señal usando un amplificador de potencia conmutado, no lineal y que permite obtener un elevado rendimiento. Esta solución fue propuesta en el año 1952, pero no ha sido implementada con éxito durante muchos años debido a los exigentes requerimientos en cuanto a la sincronización entre fase y envolvente, a las técnicas de control y de corrección de los errores y no linealidades de cada una de las etapas así como de los equipos para poder implementar estas técnicas, que tienen unos requerimientos exigentes en capacidad de cálculo y procesamiento. Dentro del diseño de un RFPA, el amplificador de envolvente tiene una gran importancia debido a su influencia en el rendimiento y ancho de banda del sistema completo. Adicionalmente, la linealidad y la calidad de la señal de transmitida deben ser elevados para poder cumplir con los diferentes estándares de telecomunicaciones. Esta tesis se centra en el amplificador de envolvente y el objetivo principal es el desarrollo de soluciones que permitan el aumento del rendimiento total del sistema a la vez que satisfagan los requerimientos de ancho de banda, calidad de la señal transmitida y de linealidad. Debido al elevado rendimiento que potencialmente puede alcanzarse con la técnica de EER, esta técnica ha sido objeto de análisis y en el estado del arte pueden encontrarse numerosas referencias que analizan el diseño y proponen diversas implementaciones. En una clasificación de alto nivel, podemos agrupar las soluciones propuestas del amplificador de envolvente según estén compuestas de una o múltiples etapas. Las soluciones para el amplificador de envolvente en una configuración multietapa se basan en la combinación de un convertidor conmutado, de elevado rendimiento con un regulador lineal, de alto ancho de banda, en una combinación serie o paralelo. Estas soluciones, debido a la combinación de las características de ambas etapas, proporcionan un buen compromiso entre rendimiento y buen funcionamiento del amplificador de RF. Por otro lado, la complejidad del sistema aumenta debido al mayor número de componentes y de señales de control necesarias y el aumento de rendimiento que se consigue con estas soluciones es limitado. Una configuración en una etapa tiene las ventajas de una mayor simplicidad, pero debido al elevado ancho de banda necesario, la frecuencia de conmutación debe aumentarse en gran medida. Esto implicará un bajo rendimiento y un peor funcionamiento del amplificador de envolvente. En el estado del arte pueden encontrarse diversas soluciones para un amplificador de envolvente en una etapa, como aumentar la frecuencia de conmutación y realizar la implementación en un circuito integrado, que tendrá mejor funcionamiento a altas frecuencias o utilizar técnicas topológicas y/o filtros de orden elevado, que permiten una reducción de la frecuencia de conmutación. En esta tesis se propone de manera original el uso de la técnica de cancelación de rizado, aplicado al convertidor reductor síncrono, para reducir la frecuencia de conmutación comparado con diseño equivalente del convertidor reductor convencional. Adicionalmente se han desarrollado dos variantes topológicas basadas en esta solución para aumentar la robustez y las prestaciones de la misma. Otro punto de interés en el diseño de un RFPA es la dificultad de poder estimar la influencia de los parámetros de diseño del amplificador de envolvente en el amplificador final integrado. En esta tesis se ha abordado este problema y se ha desarrollado una herramienta de diseño que permite obtener las principales figuras de mérito del amplificador integrado para la técnica de EER a partir del diseño del amplificador de envolvente. Mediante el uso de esta herramienta pueden validarse el efecto del ancho de banda, el rizado de tensión de salida o las no linealidades del diseño del amplificador de envolvente para varias modulaciones digitales. Las principales contribuciones originales de esta tesis son las siguientes: La aplicación de la técnica de cancelación de rizado a un convertidor reductor síncrono para un amplificador de envolvente de alto rendimiento para un RFPA linealizado mediante la técnica de EER. Una reducción del 66% en la frecuencia de conmutación, comparado con el reductor convencional equivalente. Esta reducción se ha validado experimentalmente obteniéndose una mejora en el rendimiento de entre el 12.4% y el 16% para las especificaciones de este trabajo. La topología y el diseño del convertidor reductor con dos redes de cancelación de rizado en cascada para mejorar el funcionamiento y robustez de la solución con una red de cancelación. La combinación de un convertidor redactor multifase con la técnica de cancelación de rizado para obtener una topología que proporciona una reducción del cociente entre frecuencia de conmutación y ancho de banda de la señal. El proceso de optimización del control del amplificador de envolvente en lazo cerrado para mejorar el funcionamiento respecto a la solución en lazo abierto del convertidor reductor con red de cancelación de rizado. Una herramienta de simulación para optimizar el proceso de diseño del amplificador de envolvente mediante la estimación de las figuras de mérito del RFPA, implementado mediante EER, basada en el diseño del amplificador de envolvente. La integración y caracterización del amplificador de envolvente basado en un convertidor reductor con red de cancelación de rizado en el transmisor de radiofrecuencia completo consiguiendo un elevado rendimiento, entre 57% y 70.6% para potencias de salida de 14.4W y 40.7W respectivamente. Esta tesis se divide en seis capítulos. El primer capítulo aborda la introducción enfocada en la aplicación, los amplificadores de potencia de radiofrecuencia, así como los principales problemas, retos y soluciones existentes. En el capítulo dos se desarrolla el estado del arte de amplificadores de potencia de RF, describiéndose las principales técnicas de diseño, las causas de no linealidad y las técnicas de optimización. El capítulo tres está centrado en las soluciones propuestas para el amplificador de envolvente. El modo de control se ha abordado en este capítulo y se ha presentado una optimización del diseño en lazo cerrado para el convertidor reductor convencional y para el convertidor reductor con red de cancelación de rizado. El capítulo cuatro se centra en el proceso de diseño del amplificador de envolvente. Se ha desarrollado una herramienta de diseño para evaluar la influencia del amplificador de envolvente en las figuras de mérito del RFPA. En el capítulo cinco se presenta el proceso de integración realizado y las pruebas realizadas para las diversas modulaciones, así como la completa caracterización y análisis del amplificador de RF. El capítulo seis describe las principales conclusiones de la tesis y las líneas futuras. ABSTRACT The trend in the telecommunications sector during the last years follow a high increase in the transmission rate of voice, video and mainly in data. To achieve the required levels of data rates, the new modulation standards demand higher bandwidths and have a higher peak to average power ratio (PAPR). These specifications have a direct impact in the low efficiency of the RFPA. An additional factor for the low efficiency of the RFPA is in the power amplifier design. Traditionally, linear classes have been used for the implementation of the power amplifier as they comply with the technical requirements. However, they have a low efficiency, especially in the operating range of signals with a high PAPR. The low efficiency of the transmitter has additional disadvantages as an increase in the cost and size as the cooling system needs to be increased for a base station and a temperature increase and a lower use time for portable devices. Several solutions have been proposed in the state of the art to improve the efficiency of the transmitter as Outphasing, power combiners or Doherty technique. However, the highest potential of efficiency improvement can be obtained using a modulated power supply for the power amplifier, as in the Envelope Tracking and EER techniques. The Envelope Tracking technique is based on the modulation of the power supply of a linear power amplifier to improve the overall efficiency compared to a fixed voltage supply. In the implementation of this technique an additional stage is needed, the envelope amplifier, that will increase the complexity of the RFPA. However, the efficiency of the linear power amplifier will increase and, if designed properly, the RFPA efficiency will be improved. The advantages of this technique are that the envelope amplifier design does not require such a high bandwidth as the envelope signal and that in the integration process a perfect synchronization between envelope and phase is not required. The Envelope Elimination and Restoration (EER) technique, known also as Kahn’s technique, is based on the simultaneous modulation of envelope and phase using a high efficiency switched power amplifier. This solution has the highest potential in terms of the efficiency improvement but also has the most challenging specifications. This solution, proposed in 1952, has not been successfully implemented until the last two decades due to the high demanding requirements for each of the stages as well as for the highly demanding processing and computation capabilities needed. At the system level, a very precise synchronization is required between the envelope and phase paths to avoid a linearity decrease of the system. Several techniques are used to compensate the non-linear effects in amplitude and phase and to improve the rejection of the out of band noise as predistortion, feedback and feed-forward. In order to obtain a high bandwidth and efficient RFPA using either ET or EER, the envelope amplifier stage will have a critical importance. The requirements for this stage are very demanding in terms of bandwidth, linearity and quality of the transmitted signal. Additionally the efficiency should be as high as possible, as the envelope amplifier has a direct impact in the efficiency of the overall system. This thesis is focused on the envelope amplifier stage and the main objective will be the development of high efficiency envelope amplifier solutions that comply with the requirements of the RFPA application. The design and optimization of an envelope amplifier for a RFPA application is a highly referenced research topic, and many solutions that address the envelope amplifier and the RFPA design and optimization can be found in the state of the art. From a high level classification, multiple and single stage envelope amplifiers can be identified. Envelope amplifiers for EER based on multiple stage architecture combine a linear assisted stage and a switched-mode stage, either in a series or parallel configuration, to achieve a very high performance RFPA. However, the complexity of the system increases and the efficiency improvement is limited. A single-stage envelope amplifier has the advantage of a lower complexity but in order to achieve the required bandwidth the switching frequency has to be highly increased, and therefore the performance and the efficiency are degraded. Several techniques are used to overcome this limitation, as the design of integrated circuits that are capable of switching at very high rates or the use of topological solutions, high order filters or a combination of both to reduce the switching frequency requirements. In this thesis it is originally proposed the use of the ripple cancellation technique, applied to a synchronous buck converter, to reduce the switching frequency requirements compared to a conventional buck converter for an envelope amplifier application. Three original proposals for the envelope amplifier stage, based on the ripple cancellation technique, are presented and one of the solutions has been experimentally validated and integrated in the complete amplifier, showing a high total efficiency increase compared to other solutions of the state of the art. Additionally, the proposed envelope amplifier has been integrated in the complete RFPA achieving a high total efficiency. The design process optimization has also been analyzed in this thesis. Due to the different figures of merit between the envelope amplifier and the complete RFPA it is very difficult to obtain an optimized design for the envelope amplifier. To reduce the design uncertainties, a design tool has been developed to provide an estimation of the RFPA figures of merit based on the design of the envelope amplifier. The main contributions of this thesis are: The application of the ripple cancellation technique to a synchronous buck converter for an envelope amplifier application to achieve a high efficiency and high bandwidth EER RFPA. A 66% reduction of the switching frequency, validated experimentally, compared to the equivalent conventional buck converter. This reduction has been reflected in an improvement in the efficiency between 12.4% and 16%, validated for the specifications of this work. The synchronous buck converter with two cascaded ripple cancellation networks (RCNs) topology and design to improve the robustness and the performance of the envelope amplifier. The combination of a phase-shifted multi-phase buck converter with the ripple cancellation technique to improve the envelope amplifier switching frequency to signal bandwidth ratio. The optimization of the control loop of an envelope amplifier to improve the performance of the open loop design for the conventional and ripple cancellation buck converter. A simulation tool to optimize the envelope amplifier design process. Using the envelope amplifier design as the input data, the main figures of merit of the complete RFPA for an EER application are obtained for several digital modulations. The successful integration of the envelope amplifier based on a RCN buck converter in the complete RFPA obtaining a high efficiency integrated amplifier. The efficiency obtained is between 57% and 70.6% for an output power of 14.4W and 40.7W respectively. The main figures of merit for the different modulations have been characterized and analyzed. This thesis is organized in six chapters. In Chapter 1 is provided an introduction of the RFPA application, where the main problems, challenges and solutions are described. In Chapter 2 the technical background for radiofrequency power amplifiers (RF) is presented. The main techniques to implement an RFPA are described and analyzed. The state of the art techniques to improve performance of the RFPA are identified as well as the main sources of no-linearities for the RFPA. Chapter 3 is focused on the envelope amplifier stage. The three different solutions proposed originally in this thesis for the envelope amplifier are presented and analyzed. The control stage design is analyzed and an optimization is proposed both for the conventional and the RCN buck converter. Chapter 4 is focused in the design and optimization process of the envelope amplifier and a design tool to evaluate the envelope amplifier design impact in the RFPA is presented. Chapter 5 shows the integration process of the complete amplifier. Chapter 6 addresses the main conclusions of the thesis and the future work.
Resumo:
Objectives: A recently introduced pragmatic scheme promises to be a useful catalog of interneuron names.We sought to automatically classify digitally reconstructed interneuronal morphologies according tothis scheme. Simultaneously, we sought to discover possible subtypes of these types that might emergeduring automatic classification (clustering). We also investigated which morphometric properties weremost relevant for this classification.Materials and methods: A set of 118 digitally reconstructed interneuronal morphologies classified into thecommon basket (CB), horse-tail (HT), large basket (LB), and Martinotti (MA) interneuron types by 42 of theworld?s leading neuroscientists, quantified by five simple morphometric properties of the axon and fourof the dendrites. We labeled each neuron with the type most commonly assigned to it by the experts. Wethen removed this class information for each type separately, and applied semi-supervised clustering tothose cells (keeping the others? cluster membership fixed), to assess separation from other types and lookfor the formation of new groups (subtypes). We performed this same experiment unlabeling the cells oftwo types at a time, and of half the cells of a single type at a time. The clustering model is a finite mixtureof Gaussians which we adapted for the estimation of local (per-cluster) feature relevance. We performedthe described experiments on three different subsets of the data, formed according to how many expertsagreed on type membership: at least 18 experts (the full data set), at least 21 (73 neurons), and at least26 (47 neurons).Results: Interneurons with more reliable type labels were classified more accurately. We classified HTcells with 100% accuracy, MA cells with 73% accuracy, and CB and LB cells with 56% and 58% accuracy,respectively. We identified three subtypes of the MA type, one subtype of CB and LB types each, andno subtypes of HT (it was a single, homogeneous type). We got maximum (adapted) Silhouette widthand ARI values of 1, 0.83, 0.79, and 0.42, when unlabeling the HT, CB, LB, and MA types, respectively,confirming the quality of the formed cluster solutions. The subtypes identified when unlabeling a singletype also emerged when unlabeling two types at a time, confirming their validity. Axonal morphometricproperties were more relevant that dendritic ones, with the axonal polar histogram length in the [pi, 2pi) angle interval being particularly useful.Conclusions: The applied semi-supervised clustering method can accurately discriminate among CB, HT, LB, and MA interneuron types while discovering potential subtypes, and is therefore useful for neuronal classification. The discovery of potential subtypes suggests that some of these types are more heteroge-neous that previously thought. Finally, axonal variables seem to be more relevant than dendritic ones fordistinguishing among the CB, HT, LB, and MA interneuron types.
Resumo:
Nonlinear analysis tools for studying and characterizing the dynamics of physiological signals have gained popularity, mainly because tracking sudden alterations of the inherent complexity of biological processes might be an indicator of altered physiological states. Typically, in order to perform an analysis with such tools, the physiological variables that describe the biological process under study are used to reconstruct the underlying dynamics of the biological processes. For that goal, a procedure called time-delay or uniform embedding is usually employed. Nonetheless, there is evidence of its inability for dealing with non-stationary signals, as those recorded from many physiological processes. To handle with such a drawback, this paper evaluates the utility of non-conventional time series reconstruction procedures based on non uniform embedding, applying them to automatic pattern recognition tasks. The paper compares a state of the art non uniform approach with a novel scheme which fuses embedding and feature selection at once, searching for better reconstructions of the dynamics of the system. Moreover, results are also compared with two classic uniform embedding techniques. Thus, the goal is comparing uniform and non uniform reconstruction techniques, including the one proposed in this work, for pattern recognition in biomedical signal processing tasks. Once the state space is reconstructed, the scheme followed characterizes with three classic nonlinear dynamic features (Largest Lyapunov Exponent, Correlation Dimension and Recurrence Period Density Entropy), while classification is carried out by means of a simple k-nn classifier. In order to test its generalization capabilities, the approach was tested with three different physiological databases (Speech Pathologies, Epilepsy and Heart Murmurs). In terms of the accuracy obtained to automatically detect the presence of pathologies, and for the three types of biosignals analyzed, the non uniform techniques used in this work lightly outperformed the results obtained using the uniform methods, suggesting their usefulness to characterize non-stationary biomedical signals in pattern recognition applications. On the other hand, in view of the results obtained and its low computational load, the proposed technique suggests its applicability for the applications under study.
Resumo:
This paper presents an approach to create what we have called a Unified Sentiment Lexicon (USL). This approach aims at aligning, unifying, and expanding the set of sentiment lexicons which are available on the web in order to increase their robustness of coverage. One problem related to the task of the automatic unification of different scores of sentiment lexicons is that there are multiple lexical entries for which the classification of positive, negative, or neutral {P, Z, N} depends on the unit of measurement used in the annotation methodology of the source sentiment lexicon. Our USL approach computes the unified strength of polarity of each lexical entry based on the Pearson correlation coefficient which measures how correlated lexical entries are with a value between 1 and -1, where 1 indicates that the lexical entries are perfectly correlated, 0 indicates no correlation, and -1 means they are perfectly inversely correlated and so is the UnifiedMetrics procedure for CPU and GPU, respectively. Another problem is the high processing time required for computing all the lexical entries in the unification task. Thus, the USL approach computes a subset of lexical entries in each of the 1344 GPU cores and uses parallel processing in order to unify 155802 lexical entries. The results of the analysis conducted using the USL approach show that the USL has 95.430 lexical entries, out of which there are 35.201 considered to be positive, 22.029 negative, and 38.200 neutral. Finally, the runtime was 10 minutes for 95.430 lexical entries; this allows a reduction of the time computing for the UnifiedMetrics by 3 times.
Resumo:
Context: Replication plays an important role in experimental disciplines. There are still many uncertain- ties about how to proceed with replications of SE experiments. Should replicators reuse the baseline experiment materials? How much liaison should there be among the original and replicating experiment- ers, if any? What elements of the experimental configuration can be changed for the experiment to be considered a replication rather than a new experiment? Objective: To improve our understanding of SE experiment replication, in this work we propose a classi- fication which is intend to provide experimenters with guidance about what types of replication they can perform. Method: The research approach followed is structured according to the following activities: (1) a litera- ture review of experiment replication in SE and in other disciplines, (2) identification of typical elements that compose an experimental configuration, (3) identification of different replications purposes and (4) development of a classification of experiment replications for SE. Results: We propose a classification of replications which provides experimenters in SE with guidance about what changes can they make in a replication and, based on these, what verification purposes such a replication can serve. The proposed classification helped to accommodate opposing views within a broader framework, it is capable of accounting for less similar replications to more similar ones regarding the baseline experiment. Conclusion: The aim of replication is to verify results, but different types of replication serve special ver- ification purposes and afford different degrees of change. Each replication type helps to discover partic- ular experimental conditions that might influence the results. The proposed classification can be used to identify changes in a replication and, based on these, understand the level of verification.
Resumo:
In the recent years, the computer vision community has shown great interest on depth-based applications thanks to the performance and flexibility of the new generation of RGB-D imagery. In this paper, we present an efficient background subtraction algorithm based on the fusion of multiple region-based classifiers that processes depth and color data provided by RGB-D cameras. Foreground objects are detected by combining a region-based foreground prediction (based on depth data) with different background models (based on a Mixture of Gaussian algorithm) providing color and depth descriptions of the scene at pixel and region level. The information given by these modules is fused in a mixture of experts fashion to improve the foreground detection accuracy. The main contributions of the paper are the region-based models of both background and foreground, built from the depth and color data. The obtained results using different database sequences demonstrate that the proposed approach leads to a higher detection accuracy with respect to existing state-of-the-art techniques.