991 resultados para Piscator, Johannes, 1546-1625.
Resumo:
Detecting and understanding anomalies in IP networks is an open and ill-defined problem. Toward this end, we have recently proposed the subspace method for anomaly diagnosis. In this paper we present the first large-scale exploration of the power of the subspace method when applied to flow traffic. An important aspect of this approach is that it fuses information from flow measurements taken throughout a network. We apply the subspace method to three different types of sampled flow traffic in a large academic network: multivariate timeseries of byte counts, packet counts, and IP-flow counts. We show that each traffic type brings into focus a different set of anomalies via the subspace method. We illustrate and classify the set of anomalies detected. We find that almost all of the anomalies detected represent events of interest to network operators. Furthermore, the anomalies span a remarkably wide spectrum of event types, including denial of service attacks (single-source and distributed), flash crowds, port scanning, downstream traffic engineering, high-rate flows, worm propagation, and network outage.
Resumo:
We developed an automated system that registers chest CT scans temporally. Our registration method matches corresponding anatomical landmarks to obtain initial registration parameters. The initial point-to-point registration is then generalized to an iterative surface-to-surface registration method. Our "goodness-of-fit" measure is evaluated at each step in the iterative scheme until the registration performance is sufficient. We applied our method to register the 3D lung surfaces of 11 pairs of chest CT scans and report promising registration performance.
Resumo:
Zakes Mda, dubbed one of South Africa's most prolific playwrights, produced his richest and most powerful theatre work during the 70s and 80s. Ironically, it is only in the 90s that he has been acknowledged in his own country as one of its foremost dramatists - ironic since he has recently moved away from drama into the realms of fiction. Fortunately Mda has accumulated a worthy canon of dramatic works, spanning radio and film, as well as theatre, and there is no reason to believe that he will not return to play writing. Mda has worked extensively in theatre in various capacities but most notably in the area of theatre-for-development. For example, he worked as director with Maratholi Travelling Theatre in Lesotho, an experience which contributed, in part, towards his book "When People Play People: Development Communication Through Theatre". Mda's plays have been produced in the United States, Britain, Spain, France and Russia as well as in southern Africa. "The Nun's Romantic Story" has been translated into Castilian and Catalan and "We Shall Sing for the Fatherland" and "Dark Voices Ring" have both been translated into Russian and French. In South Africa he won the Merit Award of the Amstel Playwright of the Year Society for "We Shall Sing for the Fatherland" in 1978 and in 1979 he was Amstel Playright of the Year for "The Hill". For his novel "She Plays with the Darkness", he won the Sanlam Literary Award in 1995.
Resumo:
Communication is important for social and other behavioural interactions in most marine mammal species. The bottlenose dolphin (Tursiops truncatus, Montagu, 1821) is a highly social species that use whistles as communication calls to express identity and to initiate and maintain contact between socially interactive individuals. In this thesis, the degree of variability in whistle behaviour and whistle characteristics was examined between different habitats on a range of spatial scales. The whistle characteristics that best discriminated between different communities were investigated, along with exploration of whistle variation in relation to habitat type, levels of social interaction and relatedness. Finally, the use and variability of individually distinctive calls (signature whistles) within and between Irish and US waters were also examined. Relatively high levels of whistle variation were found within a genetically and socially isolated population of dolphins in the Shannon Estuary, reflecting the need for individual identification and distinctive whistles in a population with long term site fidelity and high levels of social cohesion. Variation between reproductively separate communities in Irish waters was relatively small except between animals in inshore compared with continental shelf waters. The greatest differences in whistle structure overall were evident between dolphins using inshore and offshore US waters, likely reflecting social isolation of the two distinct ecotypes that occur in these waters but also variation in behaviour or habitat conditions. Variation found among inshore communities in US waters reflected similarities in habitat use and levels of social interaction. These findings suggest that vocal variation is socially mediated, behaviourally maintained and dependent on levels of social contact between individuals. The findings contribute to our understanding of the interaction of factors influencing vocalisation behaviour in this behaviourally complex and ecologically plastic species.
Resumo:
Photonic integration has become an important research topic in research for applications in the telecommunications industry. Current optical internet infrastructure has reached capacity with current generation dense wavelength division multiplexing (DWDM) systems fully occupying the low absorption region of optical fibre from 1530 nm to 1625 nm (the C and L bands). This is both due to an increase in the number of users worldwide and existing users demanding more bandwidth. Therefore, current research is focussed on using the available telecommunication spectrum more efficiently. To this end, coherent communication systems are being developed. Advanced coherent modulation schemes can be quite complex in terms of the number and array of devices required for implementation. In order to make these systems viable both logistically and commercially, photonic integration is required. In traditional DWDM systems, arrayed waveguide gratings (AWG) are used to both multiplex and demultiplex the multi-wavelength signal involved. AWGs are used widely as they allow filtering of the many DWDM wavelengths simultaneously. However, when moving to coherent telecommunication systems such as coherent optical frequency division multiplexing (OFDM) smaller FSR ranges are required from the AWG. This increases the size of the device which is counter to the miniaturisation which integration is trying to achieve. Much work was done with active filters during the 1980s. This involved using a laser device (usually below threshold) to allow selective wavelength filtering of input signals. By using more complicated cavity geometry devices such as distributed feedback (DFB) and sampled grating distributed Bragg gratings (SG-DBR) narrowband filtering is achievable with high suppression (>30 dB) of spurious wavelengths. The active nature of the devices also means that, through carrier injection, the index can be altered resulting in tunability of the filter. Used above threshold, active filters become useful in filtering coherent combs. Through injection locking, the coherence of the filtered wavelengths with the original comb source is retained. This gives active filters potential application in coherent communication system as demultiplexers. This work will focus on the use of slotted Fabry-Pérot (SFP) semiconductor lasers as active filters. Experiments were carried out to ensure that SFP lasers were useful as tunable active filters. In all experiments in this work the SFP lasers were operated above threshold and so injection locking was the mechanic by which the filters operated. Performance of the lasers under injection locking was examined using both single wavelength and coherent comb injection. In another experiment two discrete SFP lasers were used simultaneously to demultiplex a two-line coherent comb. The relative coherence of the comb lines was retained after demultiplexing. After showing that SFP lasers could be used to successfully demultiplex coherent combs a photonic integrated circuit was designed and fabricated. This involved monolithic integration of a MMI power splitter with an array of single facet SFP lasers. This device was tested much in the same way as the discrete devices. The integrated device was used to successfully demultiplex a two line coherent comb signal whilst retaining the relative coherence between the filtered comb lines. A series of modelling systems were then employed in order to understand the resonance characteristics of the fabricated devices, and to understand their performance under injection locking. Using this information, alterations to the SFP laser designs were made which were theoretically shown to provide improved performance and suitability for use in filtering coherent comb signals.
Resumo:
info:eu-repo/semantics/published
Resumo:
The intensity and kinetics of the serum polymeric and monomeric immunoglobulin A1 (IgA1) and IgA2 antibody responses to Campylobacter jejuni were analyzed. A rapid and marked serum IgA antibody response involving both the monomeric and polymeric components of IgA was observed after C. jejuni infections. IgA antibodies reached a peak of activity in serum during week 2 after the first symptoms of enteritis, about 10 days before the peak of IgG activity. Polymeric IgA accounted for most of the anti-C. jejuni activity at the peak of the IgA response (median, 90%; range, 44 to 98%) but rapidly disappeared from serum over a few weeks. In contrast, the serum monomeric IgA antibody response was low and was maintained over a prolonged period of time. Anti-C. jejuni IgA detected in the serum of healthy blood donors was mainly monomeric (median, 83%; range, 17 to 94%). In both the patients and the positive controls, IgA1 was the predominant (greater than 85%) subclass involved, even when the IgA antibody response was mainly polymeric. Our results suggest that polymeric IgA antibody responses are linked to a strong or persisting antigenic stimulation or both. Polymeric IgA antibodies appear to be a potential marker of acute C. jejuni infections, and their determination could provide a useful tool for the serological diagnosis of recent C. jejuni infections.
Resumo:
The potential of the violoncello as a solo instrument was recognized and supported by cellists such as Luigi Boccherini (1743-1805), Luis Duport (1749-1819), Auguste Franchomme (1808-1884), and Alfredo Piatti (1822-1901). These pioneers composed technically demanding etudes, exercises, and caprices for the cello that were comparable to those already present in the violin literature. Even so, in the late nineteenth century and early twentieth century, considerably fewer substantial works were brought forth for the cello as compared with the violin. Consequently, many cellists such as Luigi Silva (1903-1961), Gregor Piatigorsky (1903-1976), Pierre Fournier (1906-1986), and Janos Starker (b. 1924) selected notable pieces from the violin repertoire and transcribed these for the cello. Some composers themselves actually adapted for the cello their own works originally written for the violin. Johannes Brahms with his Violin Sonata Op. 78, Igor Stravinsky with his Suite Italienne, and Béla Bartók with his First Rhapsody all belong to this category. Adaptations such as these further raised awareness among composers and performers of the possibilities of the cello as an independent and expressive instrument. Thus, many composers from the early 1900s to the present were encouraged to write increasing numbers of more soloistic and demanding works for cello. Herein, I explore the repertoire of cello transcriptions in order to analyze the differences between the original and transcribed versions and the challenges found therein. The performer may attempt to recreate the effect originally intended for the violin or, more daringly, may strive to search for alternate presentations of the music more suitable and expressive of the cello's own character. The project includes two recitals of the following transcribed works presented at the University of Maryland College Park, School of Music: Sonata in A by César Franck, transcribed by Jules Delsart, Variations on a Theme from Rossini by Nicolo Paganini, transcribed by Fournier, Suite Italienne by Igor Stravinsky, transcribed with the help of Piatigorsky, Sonatina Op. 137, No. 1 by Franz Schubert, transcribed by Starker, First Rhapsody by Béla Bartók and Sonata, Op. 108 by Johannes Brahms, transcribed by Hsiao-mei Sun.
Resumo:
William Primrose (1903-1982) and Lionel Tertis (1876-1975) made the viola a grand instrument for public performances of solo and chamber music throughout their long and active lives characterized by a common passion for the viola. I, too, have been deeply inspired by their passion for the viola. I chose, therefore, for my doctoral performance project to feature works for viola from the required repertoire of the William Primrose and Lionel Tertis competitions of 2001 and 2003, respectively. For purposes of the performances, I divided selections from the combined repertoire for the William Primrose and Lionel Tertis competitions into three recitals. The first recital included Sonata, Opus 120, No.2 in E-flat Major (1894) by Johannes Brahms; Sonata, Opus 147 (1975) by Dmitri Shostakovich; and Sonata (1919) by Rebecca Clarke. These pieces represent standard components of the general repertoire for both the Primrose and Tertis competitions. The second recital was comprised of two works dedicated by their composers to Primrose: Lachrymae, Opus 48 (1950) by Benjamin Britten; and Concerto (1945) by Bela Bartok. The third recital included three pieces dedicated by their composers to Tertis: Sonata (1922) by Arnold Bax; Sonata in C Minor (1905) by York Bowen; and Sonata (1952) by Arthur Bliss. The goal of my preparation for these recitals was to emphasize a variety of techniques and, also, the unique timbre of the viola. For example, the works I selected emphasized high-position technique, which was not much used before the nineteenth century, and featured the lowest string (the C-string), which provides a beautifully somber and austere sonority characteristic of the viola. For these reasons, the selected works provided not only attractive and interesting pieces to study and perform but were also of educational merit.
Resumo:
With an ever increasing number of people taking numerous medications, the need to safely administer drugs and limit unintended side effects has never been greater. Antidote control remains the most direct means to counteract acute side effects of drugs, but, unfortunately, it has been challenging and cost prohibitive to generate antidotes for most therapeutic agents. Here we describe the development of a set of antidote molecules that are capable of counteracting the effects of an entire class of therapeutic agents based upon aptamers. These universal antidotes exploit the fact that, when systemically administered, aptamers are the only free extracellular oligonucleotides found in circulation. We show that protein- and polymer-based molecules that capture oligonucleotides can reverse the activity of several aptamers in vitro and counteract aptamer activity in vivo. The availability of universal antidotes to control the activity of any aptamer suggests that aptamers may be a particularly safe class of therapeutics.
Resumo:
The purpose of this study is to illustrate the development of piano variations as a genre during the Romantic era. In order to facilitate this examination of piano variations techniques, a brief look at the types of variation procedures used by composers of previous eras will assist in understanding developments that later occurred in the Romantic period. Throughout the Baroque era, composers preferred the fured-bass, fixed-melody, and harmonic forms of variation. The crowning achievement of Baroque keyboard music, Bach's Goldberg Variations (1725), contains examples of the "constantharmonic" method in its collection of 30 variations, each of which maintains both the bass and harmonic structure of the themes. While most composers of the classical period favored the "melodic-outline" form of variation, Haydn developed hybrid variation procedure that exhibits recurrence of material rather than repetition, alternating variation (ABABA), rondo variation (ABACA), and ternary variation (ABA). Haydn, Mozart and early Beethoven variations also exhibit simpler textures than do their Baroque predecessors. The nineteenth century produced numerous compositions that display variation techniques, some based on such older, classical models as melodic-outline variation and hybrid variation, others in the style of the character variation or fiee variation. At the beginning of the nineteenth century, Beethoven and Schubert used such classical variation techmques as melodic-outline variations and hybrid variations. Beethoven's late sonatas displayed such new means of expression as variation, fugue, and dramatic recitatives. The third movement of the Sonata in E major, Op. 109 (1820) has a theme and six variations of the melodic-outline type. Johannes Brahms was particularly fond of composing variations for piano. Among the best known examples of formal-outline variations are those found in the Variations and Fugue on a Theme of Handel, Op. 24 (1861). Character variations, in which styles are characterized by the retention and variability of particular elements, also flourished during the Romantic period. Cesar Franck's Variations Symphoniques (1885) are, perhaps, among the most important examples of free variations. This composition is a one-movement work consisting of three sections, Introduction, Variations, and Finale (all movements played "attaca"). This work combines two independent classical formal structures, the concerto and the variation.
Resumo:
For my dissertation recital project, I traced the course of the violin-piano sonata in Austro- German in the 19th century, after Beethoven. My project presented works in three general categories. First, I presented works that are frequently-played standards of the violin sonata repertoire, works by Johannes Brahms, Franz Schubert, and Robert Schumann. The Second category is works by composers better known for their other compositions: Felix Mendelssohn and Richard Strauss. Finally, I choose the works seldom played these days, but worth of consideration, by Carl Maria von Weber and Max Reger. For my first recital, I performed Schubert's Violin Sonata, No. 1, Op. 137 in D major, Schumann's Violin Sonata, No. 1, Op. 105 in a minor, and Brahms' Violin Sonata, No.3, Op. 108 in d minor, with Naoko Takao as pianist. My second recital included works of Weber's Sonata, No. 1, Op. lob, in F major, Mendelssohn's Sonata, in F major (1838), and Schumann's Sonata, No.Z,Op.121 in d minor with Grace Cho. I concluded my final recital with the works of Reger's Violin Sonata, No. 1, Op. 1 in d minor and Strauss' Violin Sonata, Op. 18 in E flat major, Soo-Young Jung at the piano. All three programs are documented in a digital audio format available on compact disc, with accompanying programs also available in digital format.
Resumo:
Humans have ~400 intact odorant receptors, but each individual has a unique set of genetic variations that lead to variation in olfactory perception. We used a heterologous assay to determine how often genetic polymorphisms in odorant receptors alter receptor function. We identified agonists for 18 odorant receptors and found that 63% of the odorant receptors we examined had polymorphisms that altered in vitro function. On average, two individuals have functional differences at over 30% of their odorant receptor alleles. To show that these in vitro results are relevant to olfactory perception, we verified that variations in OR10G4 genotype explain over 15% of the observed variation in perceived intensity and over 10% of the observed variation in perceived valence for the high-affinity in vitro agonist guaiacol but do not explain phenotype variation for the lower-affinity agonists vanillin and ethyl vanillin.
Resumo:
Single-molecule sequencing instruments can generate multikilobase sequences with the potential to greatly improve genome and transcriptome assembly. However, the error rates of single-molecule reads are high, which has limited their use thus far to resequencing bacteria. To address this limitation, we introduce a correction algorithm and assembly strategy that uses short, high-fidelity sequences to correct the error in single-molecule sequences. We demonstrate the utility of this approach on reads generated by a PacBio RS instrument from phage, prokaryotic and eukaryotic whole genomes, including the previously unsequenced genome of the parrot Melopsittacus undulatus, as well as for RNA-Seq reads of the corn (Zea mays) transcriptome. Our long-read correction achieves >99.9% base-call accuracy, leading to substantially better assemblies than current sequencing strategies: in the best example, the median contig size was quintupled relative to high-coverage, second-generation assemblies. Greater gains are predicted if read lengths continue to increase, including the prospect of single-contig bacterial chromosome assembly.
Resumo:
Transcranial magnetic stimulation (TMS) is a widely used, noninvasive method for stimulating nervous tissue, yet its mechanisms of effect are poorly understood. Here we report new methods for studying the influence of TMS on single neurons in the brain of alert non-human primates. We designed a TMS coil that focuses its effect near the tip of a recording electrode and recording electronics that enable direct acquisition of neuronal signals at the site of peak stimulus strength minimally perturbed by stimulation artifact in awake monkeys (Macaca mulatta). We recorded action potentials within ∼1 ms after 0.4-ms TMS pulses and observed changes in activity that differed significantly for active stimulation as compared with sham stimulation. This methodology is compatible with standard equipment in primate laboratories, allowing easy implementation. Application of these tools will facilitate the refinement of next generation TMS devices, experiments and treatment protocols.