891 resultados para Phylogenetic Position
Resumo:
An investigation into the phylogenetic variation of plant tolerance and the root and shoot uptake of organic contaminants was undertaken. The aim was to determine if particular families or genera were tolerant of, or accumulated organic pollutants. Data were collected from sixty-nine studies. The variation between experiments was accounted for using a residual maximum likelihood analysis to approximate means for individual taxa. A nested ANOVA was subsequently used to determine differences at a number of differing phylogenetic levels. Significant differences were observed at a number of phylogenetic levels for the tolerance to TPH, the root concentration factor and the shoot concentration factor. There was no correlation between the uptake of organic pollutants and that of heavy metals. The data indicate that plant phylogeny is an important influence on both the plant tolerance and uptake of organic pollutants. If this study can be expanded, such information can be used when designing plantings for phytoremediation or risk reduction during the restoration of contaminated sites.
Resumo:
This study evaluates computer-generated written explanations about drug prescriptions that are based on an analysis of both patient and doctor informational needs. Three experiments examine the effects of varying the type of information given about the possible side effects of the medication, and the order of information within the explanation. Experiment 1 investigated the effects of these two factors on people's ratings of how good they consider the explanations to be and of their perceived likelihood of taking the medication, as well as on their memory for the information in the explanation. Experiment 2 further examined the effects of varying information about side effects by separating out the contribution of number and severity of side effects. It was found that participants in this study did not “like” explanations that described severe side effects, and also judged that they would be less likely to take the medication if given such explanations. Experiment 3 therefore investigated whether information about severe side effects could be presented in such a way as to increase judgements of how good explanations are thought to be, as well as the perceived likelihood of adherence. The results showed some benefits of providing additional explanatory information.
Resumo:
The cupin superfamily is a group of functionally diverse proteins that are found in all three kingdoms of life, Archaea, Eubacteria, and Eukaryota. These proteins have a characteristic signature domain comprising two histidine- containing motifs separated by an intermotif region of variable length. This domain consists of six beta strands within a conserved beta barrel structure. Most cupins, such as microbial phosphomannose isomerases (PMIs), AraC- type transcriptional regulators, and cereal oxalate oxidases (OXOs), contain only a single domain, whereas others, such as seed storage proteins and oxalate decarboxylases (OXDCs), are bi-cupins with two pairs of motifs. Although some cupins have known functions and have been characterized at the biochemical level, the majority are known only from gene cloning or sequencing projects. In this study, phylogenetic analyses were conducted on the conserved domain to investigate the evolution and structure/function relationships of cupins, with an emphasis on single- domain plant germin-like proteins (GLPs). An unrooted phylogeny of cupins from a wide spectrum of evolutionary lineages identified three main clusters, microbial PMIs, OXDCs, and plant GLPs. The sister group to the plant GLPs in the global analysis was then used to root a phylogeny of all available plant GLPs. The resulting phylogeny contained three main clades, classifying the GLPs into distinct subfamilies. It is suggested that these subfamilies correlate with functional categories, one of which contains the bifunctional barley germin that has both OXO and superoxide dismutase (SOD) activity. It is proposed that GLPs function primarily as SODs, enzymes that protect plants from the effects of oxidative stress. Closer inspection of the DNA sequence encoding the intermotif region in plant GLPs showed global conservation of thymine in the second codon position, a character associated with hydrophobic residues. Since many of these proteins are multimeric and enzymatically inactive in their monomeric state, this conservation of hydrophobicity is thought to be associated with the need to maintain the various monomer- monomer interactions. The type of structure-based predictive analysis presented in this paper is an important approach for understanding gene function and evolution in an era when genomes from a wide range of organisms are being sequenced at a rapid rate.
Resumo:
The order Fabales, including Leguminosae, Polygalaceae, Quillajaceae and Surianaceae, represents a novel hypothesis emerging from angiosperm molecular phylogenies. Despite good support for the order, molecular studies to date have suggested contradictory, poorly supported interfamilial relationships. Our reappraisal of relationships within Fabales addresses past taxon sampling deficiencies, and employs parsimony and Bayesian approaches using sequences from the plastid regions rbcL (166 spp.) and matK (78 spp.). Five alternative hypotheses for interfamilial relationships within Fabales were recovered. The Shimodaira-Hasegawa test found the likelihood of a resolved topology significantly higher than the one calculated for a polytomy, but did not favour any of the alternative hypotheses of relationship within Fabales. In the light of the morphological evidence available and the comparative behavior of rbcL and matK, the topology recovering Polygalaceae as sister to the rest of the order Fabales with Leguminosae more closely related to Quillajaceae + Surianaceae, is considered the most likely hypothesis of interfamilial relationships of the order. Dating of selected crown clades in the Fabales phylogeny using penalized likelihood suggests rapid radiation of the Leguminosae, Polygalaceae, and (Quillajaceae + Surianaceae) crown clades.
Resumo:
In this paper we describe a lightweight Web portal developed for running computational jobs on a IBM JS21 Bladecenter cluster, ThamesBlue, for inferring and analyzing evolutionary histories. We first discuss the need for leveraging HPC as a enabler for molecular phylogenetics research. We go on to describe how the portal is designed to interface with existing open-source software that is typical of a HPC resource configuration, and how by design this portal is generic enough to be portable to other similarly configured compute clusters, and for other applications.
Resumo:
We present the first assessment of phylogenetic utility of a potential novel low-copy nuclear gene region in flowering plants. A fragment of the MORE AXILLARY GROWTH 4 gene (MAX4, also known as RAMOSUS1 and DECREASED APICAL DOMINANCE1), predicted to span two introns, was isolated from members of Digitalis/Isoplexis. Phylogenetic analyses, under both maximum parsimony and Bayesian inference, were performed and revealed evidence of putative MAX4-like paralogues. The MAX4-like trees were compared with those obtained for Digitalis/Isoplexis using ITS and trnL-F, revealing a high degree of incongruence between these different DNA regions. Network analyses indicate complex patterns of evolution between the MAX4 sequences, which cannot be adequately represented on bifurcating trees. The incidence of paralogy restricts the use of MAX4 in phylogenetic inference within the study group, although MAX4 could potentially be used in combination with other DNA regions for resolving species relationships in cases where paralogues can be clearly identified.
Resumo:
We present the first assessment of phylogenetic utility of a potential novel low-copy nuclear gene region in flowering plants. A fragment of the MORE AXILLARY GROWTH 4 gene (MAX4, also known as RAMOSUS1 and DECREASED APICAL DOMINANCE1), predicted to span two introns, was isolated from members of Digitalis/Isoplexis. Phylogenetic analyses, under both maximum parsimony and Bayesian inference, were performed and revealed evidence of putative MAX4-like paralogues. The MAX4-like trees were compared with those obtained for Digitalis/Isoplexis using ITS and trnL-F, revealing a high degree of incongruence between these different DNA regions. Network analyses indicate complex patterns of evolution between the MAX4 sequences, which cannot be adequately represented on bifurcating trees. The incidence of paralogy restricts the use of MAX4 in phylogenetic inference within the study group, although MAX4 could potentially be used in combination with other DNA regions for resolving species relationships in cases where paralogues can be clearly identified.
Resumo:
The rate at which a given site in a gene sequence alignment evolves over time may vary. This phenomenon-known as heterotachy-can bias or distort phylogenetic trees inferred from models of sequence evolution that assume rates of evolution are constant. Here, we describe a phylogenetic mixture model designed to accommodate heterotachy. The method sums the likelihood of the data at each site over more than one set of branch lengths on the same tree topology. A branch-length set that is best for one site may differ from the branch-length set that is best for some other site, thereby allowing different sites to have different rates of change throughout the tree. Because rate variation may not be present in all branches, we use a reversible-jump Markov chain Monte Carlo algorithm to identify those branches in which reliable amounts of heterotachy occur. We implement the method in combination with our 'pattern-heterogeneity' mixture model, applying it to simulated data and five published datasets. We find that complex evolutionary signals of heterotachy are routinely present over and above variation in the rate or pattern of evolution across sites, that the reversible-jump method requires far fewer parameters than conventional mixture models to describe it, and serves to identify the regions of the tree in which heterotachy is most pronounced. The reversible-jump procedure also removes the need for a posteriori tests of 'significance' such as the Akaike or Bayesian information criterion tests, or Bayes factors. Heterotachy has important consequences for the correct reconstruction of phylogenies as well as for tests of hypotheses that rely on accurate branch-length information. These include molecular clocks, analyses of tempo and mode of evolution, comparative studies and ancestral state reconstruction. The model is available from the authors' website, and can be used for the analysis of both nucleotide and morphological data.
Resumo:
We investigate the performance of phylogenetic mixture models in reducing a well-known and pervasive artifact of phylogenetic inference known as the node-density effect, comparing them to partitioned analyses of the same data. The node-density effect refers to the tendency for the amount of evolutionary change in longer branches of phylogenies to be underestimated compared to that in regions of the tree where there are more nodes and thus branches are typically shorter. Mixture models allow more than one model of sequence evolution to describe the sites in an alignment without prior knowledge of the evolutionary processes that characterize the data or how they correspond to different sites. If multiple evolutionary patterns are common in sequence evolution, mixture models may be capable of reducing node-density effects by characterizing the evolutionary processes more accurately. In gene-sequence alignments simulated to have heterogeneous patterns of evolution, we find that mixture models can reduce node-density effects to negligible levels or remove them altogether, performing as well as partitioned analyses based on the known simulated patterns. The mixture models achieve this without knowledge of the patterns that generated the data and even in some cases without specifying the full or true model of sequence evolution known to underlie the data. The latter result is especially important in real applications, as the true model of evolution is seldom known. We find the same patterns of results for two real data sets with evidence of complex patterns of sequence evolution: mixture models substantially reduced node-density effects and returned better likelihoods compared to partitioning models specifically fitted to these data. We suggest that the presence of more than one pattern of evolution in the data is a common source of error in phylogenetic inference and that mixture models can often detect these patterns even without prior knowledge of their presence in the data. Routine use of mixture models alongside other approaches to phylogenetic inference may often reveal hidden or unexpected patterns of sequence evolution and can improve phylogenetic inference.
Resumo:
Floral meristems are generally determinate. Termination of their activity varies with species, occurring after carpel or ovule development, depending on the placentation type. In terminal flowering Impatiens balsamina (cv. Dwarf Bush Flowered) some flowers exhibit meristem indeterminacy; they produce organs from the placenta after ovule development. Here we provide a detailed description of gynoecium development in this line and explore the basis of the indeterminate nature of some of its floral meristems. We find that the placenta is sometimes established without complete carpel fusion. Proliferative growth derives from meristematic remnants of the placenta and is more common in the terminal inflorescence. RNA in situ hybridization reveals that IbLFY (Impatiens LFY homologue) is expressed in all meristem states, even in proliferating meristems. Expression of IbAG in axillary flowers is as expected in the meristem, stamens and carpels but absent from the proliferating meristem. We conclude that I. balsamina has cauline placentation. Incomplete suppression of inflorescence identity in flowers of the terminal inflorescence leads to floral meristem proliferation after ovule development in this species.