966 resultados para Peripheral blood mononuclear cells
Resumo:
A recombinant Mycobacterium bovis bacillus Calmette-Guérin (BCG) vector-based vaccine that secretes the V3 principal neutralizing epitope of human immunodeficiency virus (HIV) could induce immune response to the epitope and prevent the viral infection. By using the Japanese consensus sequence of HIV-1, we successfully constructed chimeric protein secretion vectors by selecting an appropriate insertion site of a carrier protein and established the principal neutralizing determinant (PND)-peptide secretion system in BCG. The recombinant BCG (rBCG)-inoculated guinea pigs were initially screened by delayed-type hypersensitivity (DTH) skin reactions to the PND peptide, followed by passive transfer of the DTH by the systemic route. Further, immunization of mice with the rBCG resulted in induction of cytotoxic T lymphocytes. The guinea pig immune antisera showed elevated titers to the PND peptide and neutralized HIVMN, and administration of serum IgG from the vaccinated guinea pigs was effective in completely blocking the HIV infection in thymus/liver transplanted severe combined immunodeficiency (SCID)/hu or SCID/PBL mice. In addition, the immune serum IgG was shown to neutralize primary field isolates of HIV that match the neutralizing sequence motif by a peripheral blood mononuclear cell-based virus neutralization assay. The data support the idea that the antigen-secreting rBCG system can be used as a tool for development of HIV vaccines.
Resumo:
The influence of a synthetic retroviral peptide, CKS-17, on T helper type 1 (Th1)- or Th2-related cytokines was investigated in human blood mononuclear cells. Cells were stimulated with staphylococcal enterotoxin A, anti-CD3 plus anti-CD28 monoclonal antibodies, or lipopolysaccharide to induce cytokine mRNA. mRNA was detected by a reverse transcription-polymerase chain reaction or Northern blot analysis. CKS-17 down-regulated stimulant-induced mRNA accumulation for interferon gamma (IFN-gamma), interleukin (IL)-2, and p40 heavy and p35 light chains of IL-12, a cytokine that mediates development of Th1 response. CKS-17 up-regulated stimulant-induced mRNA accumulation of IL-10 and did not suppress Th2-related cytokine (IL-4, IL-5, IL-6, or IL-13) mRNA expression. A reverse sequence of CKS-17 peptide, used as a control, showed no such action. Anti-human IL-10 monoclonal antibody blocked ability of CKS-17 to inhibit mRNA accumulation for IFN-gamma but not the CKS-17 suppressive activity of IL-12 p40 heavy chain mRNA. Thus, CKS-17-mediated suppression of IFN-gamma mRNA expression is dependent upon augmentation of IL-10 production by CKS-17. This conserved component of several retroviral envelope proteins, CKS-17, may act as an immunomodulatory epitope responsible for cytokine dysregulation that leads to suppression of cellular immunity.
Resumo:
Objective. Since 1996, autologous hemopoietic stem cell transplantation (HSCT) has been used to treat severe rheumatoid arthritis (RA). To date, published reports have been individual cases or series containing small numbers. This study combined the worldwide experience in a single analysis. Methods. The Autoimmune Disease Databases of the European Group for Blood and Marrow Transplantation (EBMT) and the Autologous Blood and Marrow Transplant Registry (ABMTR) were used to identify patients with RA treated with autologous HSCT. Further information relating to patient and treatment-specific variables was obtained by questionnaire. Results. Seventy-six patients were registered from 15 centers. Seventy-three patients had received autologous HSCT, and in 3 patients hematopoietic stem cells (HSC) were mobilized but not transplanted. Transplanted patients (median age 42 yrs, 74% female, 86% rheumatoid factor positive) had been previously treated with a mean of 5 (range 2-9) disease modifying antirheumatic drugs (DMARD). Significant functional impairment was present, with a median Health Assessment Questionnaire (HAQ) score of 1.4 (range 1.1-2.0) and Steinbrocker score mean 2.39 (SD 0.58). The high dose treatment regimen was cyclophosphamide (CYC) alone in the majority of patients, mostly 200 mg/kg (n = 62). Seven patients received anti-thymocyte globulin (ATG) in addition to CYC, 2 patients busulfan and CYC (BuCYC), and one patient CYC with total body irradiation and ATG. One patient received fludarabine with ATG. Following treatment, one patient received bone marrow but the rest received chemotherapy and/or granulocyte colony-stimulating factor mobilized peripheral blood stem cells. The harvest was unmanipulated in 28 patients, the rest receiving some form of lymphocyte depletion, mostly through CD34+ selection. Median followup was 16 months (range 3-55). Responses were measured using the American College of Rheumatology (ACR) criteria. Forty-nine patients (67%) achieved at least ACR 50% response at some point following transplant. There was a significant reduction in the level of disability measured by the HAQ (p < 0.005). Most patients restarted DMARD within 6 months for persistent or recurrent disease activity, which provided disease control in about half the cases. Response was significantly related to seronegative RA (p = 0.02) but not to duration of disease, number of previous DMARD, presence of HLA-DR4, or removal of lymphocytes from the graft. There was no direct transplant related mortality, although one patient, treated with the BuCYC regimen, died 5 months post-transplant from infection and incidental non-small cell lung cancer. Conclusion. Autologous HSCT is a relatively safe form of salvage treatment in severe, resistant RA. In these open label studies significant responses were achieved in most patients, with over 50% achieving an ACR 50 or more response at 12 months. Although the procedure is not curative, recurrent or persistent disease activity may be subsequently controlled in some patients with DMARD. Clinical trials are necessary to develop this approach inpatients with aggressive disease who have failed conventional treatment including anti-tumor necrosis factor agents.
Resumo:
The AXIN1 gene has been implicated in caudal duplication anomalies. Its coding region was sequenced in both members of a monozygotic ( MZ) twin pair discordant for a caudal duplication anomaly, but no mutation was found. Using bisulfite sequencing, we examined methylation at the promoter region of the AXIN1 gene in these twins and in twin and age-matched singleton controls. Methylation of the promoter region in peripheral blood mononucleated cells was variable among individuals, including MZ pairs. In the MZ pair discordant for the caudal duplication, this region of the affected twin was significantly more methylated than that of the unaffected twin (), which was significantly more P < .0001 methylated than those of the controls (). We have confirmed that this CpG island does function as a promoter P = .02 in vitro and that its activity is inversely proportional to the extent of methylation. This finding raises the possibility that hypermethylation of the AXIN1 promoter, by mechanisms as yet undetermined, is associated with the malformation. This case may be paradigmatic for some cases of MZ discordance.
Resumo:
The oxidative base lesion 8-oxo-deoxyguanosine (8-oxo-dG) has been identified in DNA isolated from normal tissue and may occur at elevated levels during disease. However, the use of phenol during DNA extraction may artificially elevate the detected levels of this lesion. Herein, we have performed a comparative methodological study using both pronase E and phenol extraction techniques; native or oxidatively stressed DNA was isolated to determine the validity of each extraction technique for the subsequent determination of 8-oxo-dG. Whilst the yields of DNA were comparable, after pronase E extraction there was no detectable induction of 8-oxo-dG in reextracted naked DNA or peripheral blood mononuclear cell DNA that had been oxidatively stressed. However, phenol extraction enhanced the basal levels of 8-oxo-dG detected, and also induced a significant increase in levels of the modified base after exposure to oxidative stress. The latter was dependent on the presence of foetal calf serum in the extracellular medium. We have confirmed that phenol extraction sensitises native DNA to subsequent oxidative damage. In addition, this work shows that the extent of sensitisation occurring during phenol extraction varies with the degree of oxidative damage already incurred and infers that labile guanine sites generated during oxidative stress may be detected as 8-oxo-dG residues after phenol extraction.
Resumo:
Weight loss in advanced cancer patients is refractory to conventional nutritional support. This may be due to metabolic changes mediated by proinflammatory cytokines, hormones, and tumor-derived products. We previously showed that a nutritional supplement enriched with fish oil will reverse weight loss in patients with pancreatic cancer cachexia. The present study examines the effect of this supplement on a number of mediators thought to play a role in cancer cachexia. Twenty weight-losing patients with pancreatic cancer were asked to consume a nutritional supplement providing 600 kcal and 2 g of eicosapentaenoic acid per day. At baseline and after 3 wk, patients were weighed and samples were collected to measure serum concentrations of interleukin (IL)-6 and its soluble receptor tumor necrosis factor receptors I and II, cortisol, insulin, and leptin, peripheral blood mononuclear cell production of IL-1 beta, IL-6, and tumor necrosis factor, and urinary excretion of proteolysis inducing factor. After 3 wk of consumption of the fish oil-enriched nutritional supplement, there was a significant fall in production of IL-6 (from median 16.5 to 13.7 ng/ml, P = 0.015), a rise in serum insulin concentration (from 3.3 to 5.0 mU/l, P = 0.0064), a fall in the cortisol-to-insulin ratio (P = 0.0084), and a fall in the proportion of patients excreting proteolysis inducing factor (from 88% to 40%, P = 0.008). These changes occurred in association with weight gain (median 1 kg, P = 0.024). Various mediators of catabolism in cachexia are modulated by administration of a fish oil-enriched nutritional supplement in pancreatic cancer patients. This may account for the reversal of weight loss in patients consuming this supplement.
Resumo:
The ageing process is strongly influenced by nutrient balance, such that modest calorie restriction (CR) extends lifespan in mammals. Irisin, a newly described hormone released from skeletal muscles after exercise, may induce CR-like effects by increasing adipose tissue energy expenditure. Using telomere length as a marker of ageing, this study investigates associations between body composition, plasma irisin levels and peripheral blood mononuclear cell telomere length in healthy, non-obese individuals. Segmental body composition (by bioimpedance), telomere length and plasma irisin levels were assessed in 81 healthy individuals (age 43∈±∈15.8 years, BMI 24.3∈±∈2.9 kg/m2). Data showed significant correlations between log-transformed relative telomere length and the following: age (p∈<∈0.001), height (p∈=∈0.045), total body fat percentage (p∈=∈0.031), abdominal fat percentage (p∈=∈0.038) , visceral fat level (p∈<∈0.001), plasma leptin (p∈=∈0.029) and plasma irisin (p∈=∈0.011), respectively. Multiple regression analysis using backward elimination revealed that relative telomere length can be predicted by age (b∈=∈-0.00735, p∈=∈0.001) and plasma irisin levels (b∈=∈0.04527, p∈=∈0.021). These data support the view that irisin may have a role in the modulation of both energy balance and the ageing process. © 2014 The Author(s).
Resumo:
The oxidoreductase Trx-1 (thioredoxin 1) is highly conserved and found intra- and extra-cellularly in mammalian systems. There is increasing interest in its capacity to regulate immune function based on observations of altered distribution and expression during ageing and disease. We have investigated previously whether extracellular T-cell or peripheral blood mononuclear cell Trx-1 levels serve as a robust marker of ageing. In a preliminary study of healthy older adults compared with younger adults, we showed that therewas a significant, butweak, relationshipwith age. Interestingly, patientswith rheumatoid arthritis and cancer have been described by others to secrete or express greater surface Trx-1 than predicted. It is interesting to speculate whether a decline in Trx-1 during ageing protects against such conditions, but correspondingly increases risk of disease associated with Trx-1 depletion such as cardiovascular disease. These hypotheses are being explored in the MARK-AGE study, and preliminary findings confirm an inverse correlation of surface Trx-1 with age. We review recent concepts around the role of Trx-1 and its partners in T-cell function on the cell surface and as an extracellular regulator of redox state in a secreted form. Further studies on the redox state and binding partners of surface and secreted Trx-1 in larger patient datasets are needed to improve our understanding of why Trx-1 is important for lifespan and immune function. © The Authors Journal compilation © 2014 Biochemical Society.
Resumo:
B cell abnormalities contribute to the development and progress of autoimmune disease. Traditionally, the role of B cells in autoimmune disease was thought to be predominantly limited to the production of autoantibodies. Nevertheless, in addition to autoantibody production, B cells have other functions potentially relevant to autoimmunity. Such functions include antigen presentation to and activation of T cells, expression of costimulatory molecules and cytokine production. Recently, the ability of B cells to negatively regulate cellular immune responses and inflammation has been described and the concept of “regulatory B cells” has emerged. A variety of cytokines produced by regulatory B cell subsets have been reported with interleukin-10 (IL-10) being the most studied. IL-10-producing regulatory B cells predominantly localize within a rare CD1dhiCD5+ B cell subset in mice and the CD24hiCD27+ B cell subset in adult humans. This specific IL-10-producing subset of regulatory B cells have been named “B10 cells” to highlight that the regulatory function of these rare B cells is primarily mediated by IL-10, and to distinguish them from other regulatory B cell subsets that regulate immune responses through different mechanisms. B10 cells have been studies in a variety of animal models with autoimmune disease and clinical settings of human autoimmunity. There are many unsolved questions related to B10 cells including their surface phenotype, their origin and development in vivo, and their role in autoimmunity.
In Chapter 3 of this dissertation, the role of the B cell receptor (BCR) in B10 cell development is highlighted. First, the BCR repertoire of mouse peritoneal cavity B10 cells is examined by single cell sequencing; peritoneal cavity B10 cells have clonally diverse germline BCRs that are predominantly unmutated. Second, mouse B10 cells are shown to have higher frequencies of λ+ BCRs compared to non-B10 cells which may indicate the involvement of BCR light chain editing early in the process of B10 cell development in vivo. Third, human peripheral blood B10 cells are examined and are also found to express higher frequencies of λ chains compared to non-b10 cells. Therefore, B10 cell BCRs are clonally diverse and enriched for unmutated germline sequences and λ light chains.
In Chapter 4 of this dissertation, B10 cells are examined in the healthy developing human across the entire age range of infancy, childhood and adolescence, and in a large cohort of children with autoimmunity. The study of B10 cells in the developing human documents a massive transient expansion during middle childhood when up to 30% of blood B cells were competent to produce IL-10. The surface phenotype of pediatric B10 cells was variable and reflective of overall B cell development. B10 cells down-regulated CD4+ T cell interferon-gamma (IFN-γ) production through IL-10-dependent pathways and IFN-γ inhibited whereas interleukin-21 (IL-21) promoted B cell IL-10 competency in vitro. Children with autoimmunity had a contracted B10 cell compartment, along with increased IFN-γ and decreased IL-21 serum levels compared to age-matched healthy controls. The decreased B10 cell frequencies and numbers in children with autoimmunity may be partially explained by the differential regulation of B10 cell development by IFN-γ and IL-21 and alterations in serum cytokine levels. The age-related changes of the B10 cell compartment during normal human development provide new insights into immune tolerance mechanisms involved in inflammation and autoimmunity.
These studies collectively demonstrate that BCR signals are the most important early determinant of B10 cell development in vivo, that human B10 cells are not a surface phenotype defined developmental B cell subset but a functionally defined regulatory B cell subset that regulates CD4+ T IFN-γ production through IL-10-dependent pathways and that human B10 cell development can be regulated by soluble factors in vivo such as the cytokine milieu. The findings of these studies provide new insights into immune tolerance mechanisms involved in human autoimmunity and the potent effects of IL-21 on human B cell IL-10 competence in vitro open new horizons in the development of autologous B10 cell-based therapies as an approach to treat human autoimmune disease in the future.
Resumo:
PURPOSE: This study sought to establish whether functional analysis of the ATM-p53-p21 pathway adds to the information provided by currently available prognostic factors in patients with chronic lymphocytic leukemia (CLL) requiring frontline chemotherapy. EXPERIMENTAL DESIGN: Cryopreserved blood mononuclear cells from 278 patients entering the LRF CLL4 trial comparing chlorambucil, fludarabine, and fludarabine plus cyclophosphamide were analyzed for ATM-p53-p21 pathway defects using an ex vivo functional assay that uses ionizing radiation to activate ATM and flow cytometry to measure upregulation of p53 and p21 proteins. Clinical endpoints were compared between groups of patients defined by their pathway status. RESULTS: ATM-p53-p21 pathway defects of four different types (A, B, C, and D) were identified in 194 of 278 (70%) samples. The type A defect (high constitutive p53 expression combined with impaired p21 upregulation) and the type C defect (impaired p21 upregulation despite an intact p53 response) were each associated with short progression-free survival. The type A defect was associated with chemoresistance, whereas the type C defect was associated with early relapse. As expected, the type A defect was strongly associated with TP53 deletion/mutation. In contrast, the type C defect was not associated with any of the other prognostic factors examined, including TP53/ATM deletion, TP53 mutation, and IGHV mutational status. Detection of the type C defect added to the prognostic information provided by TP53/ATM deletion, TP53 mutation, and IGHV status. CONCLUSION: Our findings implicate blockade of the ATM-p53-p21 pathway at the level of p21 as a hitherto unrecognized determinant of early disease recurrence following successful cytoreduction.
Resumo:
Nutritional status is an important determinant to the response against Leishmania infection, although few studies have characterized the molecular basis for the association found between malnutrition and the disease. Vitamin A supplementation has long been used in developing countries to prevent mortality by diarrheal and respiratory diseases, but there are no studies on the role of vitamin A in Leishmania infection, although we and others have found vitamin A deficiency in visceral Leishmaniasis (VL). Regulatory T cells are induced in vitro by vitamin A metabolites and are considered important cells implicated T CD4+ cell suppression in human VL. This work aimed to examine the correlation of nutritional status and the effect of vitamin A in the response against Leishmania infantum infection. A total of 179 children were studied: 31 had active VL, 33 VL history, 44 were DTH+ and 71 were DTH- and had negative antibody to Leishmania (DTH-/Ac-). Peripheral blood monuclear cells were isolated in a subgroup of 10 active VL and 16 DTH-/Ac- children and cultivated for 20h under 5 different conditions: 1) Medium, 2) Soluble promastigote L. infantum antigens (SLA), 3) All-trans retinoic acid (ATRA), 4) SLA + ATRA and 5) Concanavalin A. T CD4+CD25highFoxp3+, T CD4+CD25-Foxp3- and CD14+ monocytes were stained and studied by flow cytometry for IL-10, TGF-β and IL-17 production. Nutritional status was compromised in VL children, which presented lower BMI/Age and retinol concentrations when compared to healthy controls. We found a negative correlation between nutritional status (measured by BMI/Age and serum retinol) and anti-Leishmania antibodies and acute phase proteins. There was no correlation between nutritional status and parasite load. ATRA presented a dual effect in Treg cells and monocytes: In healthy children (DTH-/Ac-), it induced a regulatory response, increasing IL-10 and TGF-β production; in VL children it modulated the immune response, preventing increased IL-10 production after SLA stimulation. Furthermore, we found a positive correlation between BMI/Age and IL-17 production and negative correlation between serum retinol and IL-10 and TGF-β production in T CD4+CD25highFoxp3+ cells after SLA stimulus. Our results show a potential dual role of vitamin A in the immune system: improvement of regulatory profile during homeostasis and down modulation of IL-10 in Treg cells and monocytes during symptomatic VL. Therefore, the use of vitamin A concomitant to VL therapy might improve recovery from disease status in Leishmania infantum infection
Resumo:
Objective: Identify and characterize polymorphisms of genes ADH2, ADH3, ALDH2 and CYP2E1 in a Colombian population residing in the city of Bogotá and determine its possible relationship to the alcoholism. Methods: ADH2, ADH3, ALDH2, and CYP2E1 genotypes a population of 148 individuals with non-problematic alcohol and 65 individuals with alcoholism were determined with TaqMan probes and PCR-RFLP. DNA was obtained from peripheral blood white cells. Results: Significant difference was found in family history of alcoholism and use of other psychoactive substances to compare alcoholics with controls. When allelic frequencies for each category (gender) were considered, frequency of A2 allele carriers in ADH2 was found higher in male patients than controls. In women, the relative frequency for c1 allele in CYP2E1 was lower in controls than alcoholics. The ALDH2 locus is monomorphic. No significant differences in allele distributions of the loci examined to compare two populations were observed, however when stratifying the same trend was found that these differences tended to be significant. Conclusions: This study allows us to conclude the positive association between family history of alcoholism and alcoholism suggesting that there is a favorable hereditary predisposition. Since substance dependence requires interaction of multiple genes, the combination of genotypes ADH2*2, CYP2E1*1 combined with genotype homozygous ALDH2*1 found in this study could be leading to the population to a potential risk to alcoholism.
Resumo:
Objective: Identify and characterize polymorphisms of genes ADH2, ADH3, ALDH2 and CYP2E1 in a Colombian population residing in the city of Bogotá and determine its possible relationship to the alcoholism. Methods: ADH2, ADH3, ALDH2, and CYP2E1 genotypes a population of 148 individuals with non-problematic alcohol and 65 individuals with alcoholism were determined with TaqMan probes and PCR-RFLP. DNA was obtained from peripheral blood white cells. Results: Significant difference was found in family history of alcoholism and use of other psychoactive substances to compare alcoholics with controls. When allelic frequencies for each category (gender) were considered, frequency of A2 allele carriers in ADH2 was found higher in male patients than controls. In women, the relative frequency for c1 allele in CYP2E1 was lower in controls than alcoholics. The ALDH2 locus is monomorphic. No significant differences in allele distributions of the loci examined to compare two populations were observed, however when stratifying the same trend was found that these differences tended to be significant. Conclusions: This study allows us to conclude the positive association between family history of alcoholism and alcoholism suggesting that there is a favourable hereditary predisposition. Since substance dependence requires interaction of multiple genes, the combination of genotypes ADH2*2, CYP2E1*1 combined with genotype homozygous ALDH2*1 found in this study could be leading to the population to a potential risk to alcoholism.
Resumo:
Objective. Differentiated dendritic cells (DC) and other antigen-presenting cells are characterized by the nuclear location of RelB, a member of the nuclear factor kappa B/Rel family. To characterize and enumerate differentiated DC in rheumatoid arthritis (RA) peripheral blood (PB), synovial fluid (SF), and synovial tissue (ST), the expression and location of RelB were examined. Methods. RelB protein expression and cellular location were determined in RA PB, SF, and ST by flow cytometry and immunohistochemical analysis of purified cells or formalin-fixed tissue. DNA-binding activity of RelB was determined by electrophoretic: mobility shift-Western immunoblotting assays. Results. Circulating RA PBDC resembled normal immature PBDC in that they did not express intracellular RelB protein. In RA ST serial sections, cells containing nuclear RelB (nRelB) were enriched in perivascular regions. A mean +/- SD of 84 +/- 10% of these cells were DC. The remaining nRelB+,HLA-DR+ cells comprised B cells and macrophages. Only 3% of sorted SFDC contained nRelB, However, RelB present in the nucleus of these SFDC was capable of binding DNA, and therefore capable of transcriptional activity. Conclusion. Circulating DC precursors differentiate and express RelB after entry into rheumatoid ST. Differentiated DC can thus be identified by immunohistochemistry in formalin-fixed ST. Signals for DC maturation may differ between RA ST and SF, resulting in nuclear location of RelB predominantly in ST. This is likely to have functional consequences for the DC in these sites.
Resumo:
The umbilical cord blood (UCB) is an important source of hematopoietic stem cells with great deal of interest in regenerative medicine. The UCB cells have been extensively studied as an alternative to the bone marrow transplants. The challenge is to define specific methods to purify and characterize these cells in different animal species. This study is aimed at morphological characterization of progenitor cells derived from UCB highlighting relevant differences with peripheral blood of adult in dog and cats. Therefore, blood was collected from 18 dogs and 5 cats' umbilical cords from fetus in various developmental stages. The mononuclear cells were separated using the gradient of density Histopaque-1077. Characterization of CD34+ cells was performed by flow cytometric analysis and transmission electron microscopy. Granulocytes (ancestry of the basophiles, eosinophiles, and neutrophiles) and agranulocytes (represented by immature lymphocytes) were identified. We showed for the first time the ultrastructural features of cat UCB cells. Microsc. Res. Tech. 75:766770, 2012. (C) 2011 Wiley Periodicals, Inc.