991 resultados para Peptide-chain Termination
Resumo:
We report in this article for the first time the neuroprotective effects of unconjugated TAT carrier peptide against a mild excitotoxic stimulus both in vitro and in vivo. In view of the widespread use of TAT peptides to deliver neuroprotectants into cells, it is important to know the effects of the carrier itself. Unconjugated TAT carrier protects dissociated cortical neurons against NMDA but not against kainate, suggesting that TAT peptides may interfere with NMDA signaling. Furthermore, a retro-inverso form of the carrier peptide caused a reduction in lesion volume (by about 50%) in a rat neonatal cerebral ischemia model. Thus, even though TAT is designed merely as a carrier, its own pharmacological activity will need to be considered in the analysis of TAT-linked neuroprotectant peptides.
Resumo:
We improved, evaluated, and used Sanger sequencing for quantification of single nucleotide polymorphism (SNP) variants in transcripts and gDNA samples. This improved assay resulted in highly reproducible relative allele frequencies (e.g., for a heterozygous gDNA 50.0+/-1.4%, and for a missense mutation-bearing transcript 46.9+/-3.7%) with a lower detection limit of 3-9%. It provided excellent accuracy and linear correlation between expected and observed relative allele frequencies. This sequencing assay, which can also be used for the quantification of copy number variations (CNVs), methylations, mosaicisms, and DNA pools, enabled us to analyze transcripts of the FBN1 gene in fibroblasts and blood samples of patients with suspected Marfan syndrome not only qualitatively but also quantitatively. We report a total of 18 novel and 19 known FBN1 sequence variants leading to a premature termination codon (PTC), 26 of which we analyzed by quantitative sequencing both at gDNA and cDNA levels. The relative amounts of PTC-containing FBN1 transcripts in fresh and PAXgene-stabilized blood samples were significantly higher (33.0+/-3.9% to 80.0+/-7.2%) than those detected in affected fibroblasts with inhibition of nonsense-mediated mRNA decay (NMD) (11.0+/-2.1% to 25.0+/-1.8%), whereas in fibroblasts without NMD inhibition no mutant alleles could be detected. These results provide evidence for incomplete NMD in leukocytes and have particular importance for RNA-based analyses not only in FBN1 but also in other genes.
Resumo:
Generation of tumor-antigen specific CD4(+) T-helper (T(H)) lines through in vitro priming is of interest for adoptive cell therapy of cancer, but the development of this approach has been limited by the lack of appropriate tools to identify and isolate low frequency tumor antigen-specific CD4(+) T cells. Here, we have used recently developed MHC class II/peptide tetramers incorporating an immunodominant peptide from NY-ESO-1 (ESO), a tumor antigen frequently expressed in different human solid and hematologic cancers, to implement an in vitro priming platform allowing the generation of ESO-specific T(H) lines. We isolated phenotypically defined CD4(+) T-cell subpopulations from circulating lymphocytes of DR52b(+) healthy donors by flow cytometry cell sorting and stimulated them in vitro with peptide ESO(119-143), autologous APC and IL-2. We assessed the frequency of ESO-specific cells in the cultures by staining with DR52b/ESO(119-143) tetramers (ESO-tetramers) and TCR repertoire of ESO-tetramer(+) cells by co-staining with TCR variable β chain (BV) specific antibodies. We isolated ESO-tetramer(+) cells by flow cytometry cell sorting and expanded them with PHA, APC and IL-2 to generate ESO-specific T(H) lines. We characterized the lines for antigen recognition, by stimulation with ESO peptide or recombinant protein, cytokine production, by intracellular staining using specific antibodies, and alloreactivity, by stimulation with allo-APC. Using this approach, we could consistently generate ESO-tetramer(+) T(H) lines from conventional CD4(+)CD25(-) naïve and central memory populations, but not from effector memory populations or CD4(+)CD25(+) Treg. In vitro primed T(H) lines recognized ESO with affinities comparable to ESO-tetramer(+) cells from patients immunized with an ESO vaccine and used a similar TCR repertoire. In this study, using MHC class II/ESO tetramers, we have implemented an in vitro priming platform allowing the generation of ESO-monospecific polyclonal T(H) lines from non-immune individuals. This is an approach that is of potential interest for adoptive cell therapy of patients bearing ESO-expressing cancers.
Resumo:
Abstract Stroke or cerebrovascular accident, whose great majority is of ischemic nature, is the third leading cause of mortality and long lasting disability in industrialised countries. Resulting from the loss of blood supply to the brain depriving cerebral tissues of oxygen and glucose, it induces irreversible neuronal damages. Despite the large amount of research carried out into the causes and pathogenic features of cerebral ischemia the progress toward effective treatments has been poor. Apart the clot-busting drug tissue-type plasminogen activator (tPA) as effective therapy for acute stroke (reperfusion by thrombolysis) but limited to a low percentage of patients, there are currently no other approved medical treatments. The need for new therapy strategies is therefore imperative. Neuronal death in cerebral ischemia is among others due to excitotoxic mechanisms very early after stroke onset. One of the main involved molecular pathways leading to excitotoxic cell death is the c-Jun NH2-terminal kinase (JNK) pathway. Several studies have already shown the efficacy of a neuroprotective agent of a new type, a dextrogyre peptide synthesized in the retro inverso form (XG102, formerly D-JNKI1), which is protease-resistant and cell-penetrating and that selectively and strongly blocks the access of JNK to many of its targets. A powerful protection was observed with this compound in several models of ischemia (Borsello et al. 2003;Hirt et al. 2004). This chimeric compound, made up of a 10 amino acid TAT transporter sequence followed by a 20 amino acids JNK binding domain (JBD) sequence from JNK inhibitor protein (JIP) molecule, induced both a major reduction in lesion size and improved functional outcome. Moreover it presents a wide therapeutic window. XG-102 has proved its powerful efficacy in an occlusion model of middle cerebral artery in mice with intracérebroventricular (i.c.v.) injection but in order to be able to consider the development of this drug for human ischemic stroke it was therefore necessary to determine the feasibility of its systemic administration. The studies being the subject of this thesis made it possible to show a successful neuroprotection with XG-102 administered systemically after transient mouse middle cerebral artery occlusion (MCAo). Moreover our data. provided information about the feasibility to combine XG-102 with tPA without detrimental action on cell survival. By combining the benefits from a reperfusion treatment with the effects of a neuroprotective compound, it would represent the advantage of bringing better chances to protect the cerebral tissue. Résumé L'attaque cérébrale ou accident vasculaire cérébral, dont la grande majorité est de nature ischémique, constitue la troisième cause de mortalité et d'infirmité dans les pays industrialisés. Résultant de la perte d'approvisionnement de sang au cerveau privant les tissus cérébraux d'oxygène et de glucose, elle induit des dommages neuronaux irréversibles. En dépit du nombre élevé de recherches effectuées pour caractériser les mécanismes pathogènes de l'ischémie. cérébrale, les progrès vers des traitements efficaces restent pauvres. Excepté l'activateur tissulaire du plasminogène (tPA) dont le rôle est de désagréger les caillots sanguins et employé comme thérapie efficace contre l'attaque cérébrale aiguë (reperfusion par thrombolyse) mais limité à un faible pourcentage de patients, il n'y a actuellement aucun autre traitement médical approuvé. Le besoin de nouvelles stratégies thérapeutiques est par conséquent impératif. La mort neuronale dans l'ischémie cérébrale est entre autres due à des mécanismes excitotoxiques survenant rapidement après le début de l'attaque cérébrale. Une des principales voies moléculaires impliquée conduisant à la mort excitotoxique des cellules est la voie de la c-Jun NH2terminal kinase (JNK). Plusieurs études ont déjà montré l'efficacité d'un agent neuroprotecteur d'un nouveau type, un peptide dextrogyre synthétisé sous la forme retro inverso (XG-102, précédemment D-JNKI1) résistant aux protéases, capable de pénétrer dans les cellules et de bloquer sélectivement et fortement l'accès de JNK à plusieurs de ses cibles. Une puissante protection a été observée avec ce composé dans plusieurs modèles d'ischémie (Borsello et al. 2003;Hirt et al. 2004). Ce composé chimérique, construit à partir d'une séquence TAT de 10 acides aminés suivie par une séquence de 20 acides aminés d'un domaine liant JNK (JBD) issu de la molécule JNK protéine inhibitrice. (JIP), induit à la fois une réduction importante de la taille de lésion et un comportement fonctionnel amélioré. De plus il présente une fenêtre thérapeutique étendue. XG-102 a prouvé sa puissante efficacité dans un modèle d'occlusion de l'artère cérébrale moyenne chez la souris avec injection intracerebroventriculaire (i.c.v.) mais afin de pouvoir envisager le développement de ce composé pour l'attaque cérébrale chez l'homme, il était donc nécessaire de déterminer la faisabilité de son administration systémique. Les études faisant l'objet de cette thèse ont permis de montrer une neuroprotection importante avec XG-102 administré de façon systémique après l'occlusion transitoire de l'artère cérébrale moyenne chez la souris (MCAo). De plus nos données ont fourni des informations quant à la faisabilité de combiner XG-102 et tPA, démontrant une protection efficace par XG-102 malgré l'action nuisible du tPA sur la survie des cellules. En combinant les bénéfices de la reperfusion avec les effets d'un composé neurooprotecteur, cela représenterait l'avantage d'apporter des meilleures chances de protéger le tissu cérébral.
Resumo:
BACKGROUND: Plasmodium vivax circumsporozoite (PvCS) protein is a major sporozoite surface antigen involved in parasite invasion of hepatocytes and is currently being considered as vaccine candidate. PvCS contains a dimorphic central repetitive fragment flanked by conserved regions that contain functional domains. METHODS: We have developed a chimeric 137-mer synthetic polypeptide (PvCS-NRC) that includes the conserved region I and region II-plus and the two natural repeat variants known as VK210 and VK247. The antigenicity of PvCS-NRC was tested using human sera from PNG and Colombia endemic areas and its immunogenicity was confirmed in mice with different genetic backgrounds, the polypeptide formulated either in Alum or GLA-SE adjuvants was assessed in inbred C3H, CB6F1 and outbred ICR mice, whereas a formulation in Montanide ISA51 was tested in C3H mice. RESULTS: Antigenicity studies indicated that the chimeric peptide is recognized by a high proportion (60-70%) of residents of malaria-endemic areas. Peptides formulated with either GLA-SE or Montanide ISA51 adjuvants induced stronger antibody responses as compared with the Alum formulation. Sera from immunized mice as well as antigen-specific affinity purified human IgG antibodies reacted with sporozoite preparations in immunofluorescence and Western blot assays, and displayed strong in vitro inhibition of sporozoite invasion (ISI) into hepatoma cells. CONCLUSIONS: The polypeptide was recognized at high prevalence when tested against naturally induced human antibodies and was able to induce significant immunogenicity in mice. Additionally, specific antibodies were able to recognize sporozoites and were able to block sporozoite invasion in vitro. Further evaluation of this chimeric protein construct in preclinical phase e.g. in Aotus monkeys in order to assess the humoral and cellular immune responses as well as protective efficacy against parasite challenge of the vaccine candidate must be conducted.
Resumo:
Engineering bacteria for measuring chemicals of environmental or toxicological concern (bioreporter bacteria) has grown slowly into a mature research area. Despite many potential advantages, current bioreporters do not perform well enough to comply with environmental detection standards. Basically, the reasons for this are the lack of engineering principles in the detection chain in the bioreporters. Here, we dissect critical steps in the detection chain and illustrate how bioreporter design could be improved by mutagenizing specificity and selectivity of the sensing and regulatory proteins, by newer expression strategies and application of different signalling networks. Furthermore, we describe how redesigning bioreporter assays with respect to pollutant transport into the cells and application of other detection devices can decrease detection limits and increase the speed of detection.
Resumo:
We have previously shown that a 28-amino acid peptide derived from the BRC4 motif of BRCA2 tumor suppressor inhibits selectively human RAD51 recombinase (HsRad51). With the aim of designing better inhibitors for cancer treatment, we combined an in silico docking approach with in vitro biochemical testing to construct a highly efficient chimera peptide from eight existing human BRC motifs. We built a molecular model of all BRC motifs complexed with HsRad51 based on the crystal structure of the BRC4 motif-HsRad51 complex, computed the interaction energy of each residue in each BRC motif, and selected the best amino acid residue at each binding position. This analysis enabled us to propose four amino acid substitutions in the BRC4 motif. Three of these increased the inhibitory effect in vitro, and this effect was found to be additive. We thus obtained a peptide that is about 10 times more efficient in inhibiting HsRad51-ssDNA complex formation than the original peptide.
Resumo:
Ground-penetrating radar (GPR) has the potential to provide valuable information on hydrological properties of the vadose zone because of their strong sensitivity to soil water content. In particular, recent evidence has suggested that the stochastic inversion of crosshole GPR data within a coupled geophysical-hydrological framework may allow for effective estimation of subsurface van-Genuchten-Mualem (VGM) parameters and their corresponding uncertainties. An important and still unresolved issue, however, is how to best integrate GPR data into a stochastic inversion in order to estimate the VGM parameters and their uncertainties, thus improving hydrological predictions. Recognizing the importance of this issue, the aim of the research presented in this thesis was to first introduce a fully Bayesian inversion called Markov-chain-Monte-carlo (MCMC) strategy to perform the stochastic inversion of steady-state GPR data to estimate the VGM parameters and their uncertainties. Within this study, the choice of the prior parameter probability distributions from which potential model configurations are drawn and tested against observed data was also investigated. Analysis of both synthetic and field data collected at the Eggborough (UK) site indicates that the geophysical data alone contain valuable information regarding the VGM parameters. However, significantly better results are obtained when these data are combined with a realistic, informative prior. A subsequent study explore in detail the dynamic infiltration case, specifically to what extent time-lapse ZOP GPR data, collected during a forced infiltration experiment at the Arrenaes field site (Denmark), can help to quantify VGM parameters and their uncertainties using the MCMC inversion strategy. The findings indicate that the stochastic inversion of time-lapse GPR data does indeed allow for a substantial refinement in the inferred posterior VGM parameter distributions. In turn, this significantly improves knowledge of the hydraulic properties, which are required to predict hydraulic behaviour. Finally, another aspect that needed to be addressed involved the comparison of time-lapse GPR data collected under different infiltration conditions (i.e., natural loading and forced infiltration conditions) to estimate the VGM parameters using the MCMC inversion strategy. The results show that for the synthetic example, considering data collected during a forced infiltration test helps to better refine soil hydraulic properties compared to data collected under natural infiltration conditions. When investigating data collected at the Arrenaes field site, further complications arised due to model error and showed the importance of also including a rigorous analysis of the propagation of model error with time and depth when considering time-lapse data. Although the efforts in this thesis were focused on GPR data, the corresponding findings are likely to have general applicability to other types of geophysical data and field environments. Moreover, the obtained results allow to have confidence for future developments in integration of geophysical data with stochastic inversions to improve the characterization of the unsaturated zone but also reveal important issues linked with stochastic inversions, namely model errors, that should definitely be addressed in future research.
Resumo:
A synthetic human atrial natriuretic peptide of 26 aminoacids [human (3-28)ANP or hANP] was infused into normal male volunteers. Six subjects were infused for 4 h at 1-wk intervals with either hANP at the rate of 0.5 or 1.0 microgram/min or its vehicle in a single-blind randomized order. Human (3-28)ANP at the dose of 0.5 microgram/min raised immunoreactive plasma ANP levels from 104 +/- 17 to 221 +/- 24 pg/ml (mean +/- SEM), but it induced no significant change in blood pressure, heart rate, effective renal plasma flow, glomerular filtration rate, or renal electrolyte excretion. At the rate of 1.0 microgram/min, human (3-28)ANP increased immunoreactive plasma ANP levels from 89 +/- 12 to 454 +/- 30 pg/ml. It reduced effective renal plasma flow from 523 +/- 40 to 453 +/- 38 ml/min (P less than 0.05 vs. vehicle), but left glomerular filtration rate unchanged. Natriuresis rose from 207 +/- 52 to 501 +/- 69 mumol/min (P less than 0.05 vs. vehicle) and urinary magnesium excretion from 3.6 +/- 0.5 to 5.6 +/- 0.5 mumol/min (P less than 0.01 vs. vehicle). The excretion rate of the other electrolytes, blood pressure, and heart rate were not significantly modified. At both doses, human (3-28)ANP tended to suppress the activity of the renin-angiotensin-aldosterone system. In 3 additional volunteers, the skin blood flow response to human (3-28)ANP, infused for 4 h at the rate of 1.0 microgram/min, was studied by means of a laser-doppler flowmeter. The skin blood flow rose during the first 2 h of peptide administration, then fell progressively to values below baseline. After the infusion was discontinued, it remained depressed for more than 2 h. Thus, in normal volunteers, human (3-28)ANP at the dose of 1.0 microgram/min produced results similar to those obtained previously with rat (3-28)ANP. It enhanced natriuresis without changing the glomerular filtration rate while effective renal plasma flow fell. It also induced a transient vasodilation of the skin vascular bed.
Resumo:
BACKGROUND: Allogeneic bone marrow donors can be incompatible at different levels. Even HLA-identical pairs will be still incompatible for numerous minor histocompatibility antigens (mHag). Nevertheless, some incompatibilities are found to be associated with an increased risk of graft-versus-host disease (GVHD), which could be related to the way the immune system recognizes these antigens. METHODS: We determined the specificity of cytotoxic T-cell clones isolated during acute GVHD or during bone marrow graft rejection in patients (n=14) transplanted with marrow from donors who were histoincompatible for different minor and/or major histocompatibility antigens. RESULTS: We found a clear hierarchy among the different types of histoincompatibilities. In three combinations mismatched for a class I allele, all 27 clones isolated during GVHD were specific for the incompatible HLA molecule. In the 11 class I-identical combinations, 14 different mHags were recognized. The mHag HA-1, known to have a significant impact on the development of GVHD, was recognized in the two HA-1-incompatible combinations. In one of these combinations, which was sex mismatched, all 56 clones analyzed were directed against HA-1, demonstrating the dominance of this mHag. In the four HA-1-compatible, sex-mismatched combinations, the anti-H-Y response was directed against one immunodominant epitope rather than against multiple Y-chromosome-encoded epitopes. All male specific cytotoxic T lymphocytes (n=15) recognized the same high-performance liquid chromatography-purified peptide fraction presented by T2 cells. Moreover, all cytotoxic T lymphocytes tested (n=6) were specific for the SMCY-derived peptide FIDSYICQV, originally described as being the H-Y epitope recognized in the context of HLA-A*0201. CONCLUSIONS: Some histocompatibility antigens are recognized in an immunodominant fashion and will therefore be recognized in the majority of mismatched combinations. Only for such antigens, correlations between mismatches and the occurrence of GVHD or graft rejections will be found.
Resumo:
Summary1 SummaryCancer patients have a better clinical outcome when their tumours display marked infiltration by memory Τ cells. Moreover, the overrepresentation of Th1 gene signatures in primary tumours correlates with favourable prognosis. Thus, vaccination to induce Τ cells capable of infiltrating and eradicating the tumour seems a promising strategy for the treatment of cancer. Here, I monitored CD4 Τ cell responses in melanoma patients vaccinated with the long synthetic peptides Melan- A16-35(A27L) and NY-ESO-179.108. Most of the patients developed strong and diverse peptide antigen specific CD4 Τ cell responses. Analysis of the fine specificity of CD4 Τ cell antigen recognition led to the identification of two new epitopes. The peptide Melan-A16_35(A27L) was delivered by virus-like particles (VLPs) derived from bacteriophage Οβ, which themselves displayed strong immunogenicity. I show evidence for induction of Οβ- and Melan-A specific CD4 Τ cell responses that developed a Th1 functional profile after repeated vaccination cycles. They also specifically released the chemokines CCL-3 and CCL-4, which play important roles in attracting CD8 Τ cells to the APC surface for priming and formation of Τ cell memory. We further found induction of robust humoral IgG responses upon VLP vaccination, and the lgG1-lgG4 isotype composition depended on the adjuvant used. Since heavy chain class switching largely dépends on the presence of CD4 Τ cell help, this result suggests that the adjuvant can influence the differentiation of elicited CD4 Τ cells, thereby contributing to the quality and function of both Β cells and CD8 Τ cells. The nature of the inflammatory processes in the tumour microenvironment can modulate CD8 Τ cell function. A collaboration was established for the investigation regulation of inflammasome activation in human primary monocytes. We identified IL- 4 and TGF-β as strong inhibitors of IL-1 β secretion, Indicating some level of regulation from effector Th2 and Treg responses. We further found a potent inhibition of inflammasome activation by type I interferon, and demonstrated in vivo inhibition of IL-1 β responses in monocytes from active multiple sclerosis patients under IFN-β therapy. This finding further offers a possible explanation for its success, which mechanism of action is still largely unclear. Interestingly, type I interferon is also being used as adjuvant treatment for tumour free metastatic cutaneous melanoma patients. While its clinical benefit has remained controversial, recent data suggest that the subset of patients with ulcerated primary melanoma lesions can benefit from this therapy. Future investigations will shed light on the implication of the inflammasome in this context, and may offer new strategies for improved adjuvant treatments of melanoma.2 RésuméLes patients atteints de cancer ont une meilleure chance de survie si leurs tumeurs s'avèrent être largement infiltrées par des cellules Τ mémoires. De plus, la surreprésentation d'une signature génique Th1 est en corrélation avec un pronostic favorable. Ainsi, la vaccination visant à induire des cellules Τ capables d'infiltrer et de détruire la tumeur parait être une stratégie prometteuse pour le traitement du cancer. Dans ce travail, j'ai procédé au monitoring de la réponse des cellules Τ CD4 dans des patients atteints de mélanome vaccinés avec les longs peptides synthétiques Melan-A16_35(A27L) et NY-ESO-179_108. Ces peptides représentent des antigènes tumoraux reconnus par des lymphocytes T. La majorité des patients a développé une réponse forte et diversifiée des cellules Τ CD4 spécifiques contre les peptides. L'analyse de la spécificité fine de la reconnaissance antigénique des cellules Τ CD4 nous a conduits à l'identification de deux nouveaux épitopes. Le peptide Melan-Aie. 35(A27L) a été délivré par des particules de type viral (VLPs) dérivés de bactériophages Qβ, qui ont eux-mêmes démontré une forte immunogénicité. Mon travail montre les preuves d'une induction de réponses spécifiques des cellules Τ CD4 contre les Qβ et Melan-A développant un profil fonctionnel Th1 après plusieurs cycles de vaccination. Elles secrètent aussi spécifiquement les chimiokines CCL-3 et CCL-4, qui jouent un rôle important dans l'attraction des cellules Τ CD8 à la surface des cellules présentatrices d'antigènes et contribuent ainsi à induire et former la mémoire cellulaire Τ CD8. Nous avons également remarqué une induction de fortes réponses humorales IgG après vaccination avec les VLPs, et que la composition des isotypes lgG1-lgG4 dépendait de l'adjuvant utilisé. Etant donné qu'une commutation de classe de la chaîne lourde dépend largement ùie l'aide des cellules Τ CD4, ce résultat suggère que l'adjuvant puisse influencer la différeritiation de cellules Τ CD4 en différent types, contribuant ainsi à la qualité et à la fonction des cellules Β et des cellules Τ CD8.La nature des processus d'inflammation dans le microenvironnement tumoral peut moduler la fonction des cellules Τ CD8. Une collaboration a été établie pour investiguer la régulation de l'activation de l'inflammasome dans des monocytes primaires humains. Nous avons identifié l'IL-4 et le TGF-β comme étant de puissants inhibiteurs de la sécrétion de IL-Ιβ, indiquant une certaine régulation de la réponse inflammatoire induite par les cellules Th2 et Τ régulatrices. Nous avons également trouvé une forte inhibition de l'activation de l'inflammasome par l'interféron type I, et nous avons démontré une inhibition in vivo de la réponse IL-1 β dans des monocytes de patients atteints d'une sclérose en plaque active sous traitement IFN-β. Ce résultat nous offre une possible explication du succès de cette thérapie, dont le mécanisme reste à ce jour encore largement obscur. Il est intéressant de noter que l'interféron de type I est également utilisé pour le traitement de patients atteints de mélanome cutané métastasique sans tumeurs. Bien que le bénéfice clinique de ce traitement reste controversé, des études récentes montrent qu'une partie des patients atteints de mélanome primaire ulcéré peut tirer bénéfice de cette thérapie. De futures investigations pourront mieux nous renseigner sur l'implication de l'inflammasome dans ce contexte et offrir de nouvelles stratégies pour améliorer les traitements adjuvants du mélanome.
Resumo:
The presence of the antimicrobial peptide (AMP) biosynthetic genes srfAA (surfactin), bacA (bacylisin), fenD (fengycin), bmyB (bacyllomicin), spaS (subtilin), and ituC (iturin) was examined in 184 isolates of Bacillus spp. obtained from plant environments (aerial, rhizosphere, soil) in the Mediterranean land area of Spain. Most strains had between two and four AMP genes whereas strains with five genes were seldom detected and none of the strains had six genes. The most frequent AMP gene markers were srfAA, bacA, bmyB, and fenD, and the most frequent genotypes srfAA-bacA-bmyB and srfAAbacA-bmyB-fenD. The dominance of these particular genes in Bacillus strains associated with plants reinforces the competitive role of surfactin, bacyllomicin, fengycin, and bacilysin in the fitness of strains in natural environments. The use of these AMP gene markers may assist in the selection of putative biological control agents of plant pathogens
Resumo:
The goal of adoptive T cell therapy in cancer is to provide effective antitumor immunity by transfer of selected populations of tumor Ag-specific T cells. Transfer of T cells with high TCR avidity is critical for in vivo efficacy. In this study, we demonstrate that fluorescent peptide/MHC class I multimeric complexes incorporating mutations in the alpha3 domain (D227K/T228A) that abrogate binding to the CD8 coreceptor can be used to selectively isolate tumor Ag-specific T cells of high functional avidity from both in vitro expanded and ex vivo T cell populations. Sorting, cloning, and expansion of alpha3 domain mutant multimer-positive CD8 T cells enabled rapid selection of high avidity tumor-reactive T cell clones. Our results are relevant for ex vivo identification and isolation of T cells with potent antitumor activity for adoptive T cell therapy.
Resumo:
The human MAGE3 gene is expressed in a significant proportion of tumors of various histological types, but is silent in normal adult tissues other than testis and placenta. Antigens encoded by MAGE3 may therefore be useful targets for specific antitumor immunization. Two antigenic peptides encoded by the MAGE3 gene have been reported previously. One is presented to cytolytic T lymphocytes (CTL) by HLA-A1, the other by HLA-A2 molecules. Here we show that MAGE3 also codes for a peptide that is presented to CTL by HLA-B44. MAGE3 peptides containing the HLA-B44 peptide binding motif were synthesized. Peptide MEVDPIGHLY, which showed the strongest binding to HLA-B44, was used to stimulate blood T lymphocytes from normal HLA-B44 donors. CTL clones were obtained that recognized not only HLA-B44 cells sensitized with the peptide, but also HLA-B44 tumor cell lines expressing MAGE3. The proportion of metastatic melanomas expressing the MAGE3/HLA-B44 antigen should amount to approximately 17% in the Caucasian population, since 24% of individuals carry the HLA-B44 allele and 76% of these tumors express MAGE3.