1000 resultados para Pavimentos : Deformação : Instrumentação
Resumo:
O objetivo da presente investigação experimental foi avaliar o perfil mecânico de três tipos de técnicas de sutura entre tendões de dimensões diferentes. Foram utilizados 21 cães sem raça definida (11machos/10 fêmeas), dos quais foram obtidos os tendões flexor comum dos dedos - t.c. (maior dimensão) e tibial cranial - t.cr. (menor dimensão), de ambos os membros pélvicos. Logo após a obtenção das peças foi realizada sutura, segundo cada tipo de técnica, porém sempre com o mesmo número de pontos. Os tendões utilizados para sutura foram sempre do lado direito e o controle do lado esquerdo (t.cr.). Após a sutura, os corpos de prova foram fixados em garras especialmente desenvolvidas e submetidos a ensaio de tração axial à velocidade de 30mm/minuto. Após o ensaio o programa da máquina forneceu os valores da carga máxima ( na ruptura) e deformação absoluta (mm) e relativa (%), além do diagrama carga-deformação. Os resultados foram submetidos a estudo estatístico pela análise de medidas repetidas no nível de 5% de significância. Não foi constatada diferença estatisticamente significativa nos parâmetros mecânicos avaliados nos três grupos de técnicas de suturas. em relação ao controle (tendão de menos diâmetro contra-lateral), observou-se que a sutura apresenta resistência máxima a tração significativamente menor que o controle e maior deformação.
Resumo:
Os AINH (Antiinflamatórios não hormonais) são agentes utilizados na prática clínica que interferem no processo inflamatório pela inibição da síntese de prostaglandinas e tromboxanos. Alguns trabalhos experimentais investigaram sua ação no processo de consolidação de fraturas, por meio de estudos clínicos e histológicos, sendo escassas as análises biomecânicas. Nesse estudo foram utilizados 20 ratos da linhagem Wistar, divididos aleatoriamente em dois grupos iguais: grupo A (controle) e grupo B (tratado com diclofenaco sódico). em ambos os grupos foram realizadas fraturas abertas, após perfuração, na tíbia direita. A administração da droga foi via intramuscular, dose única diária, por 28 dias. Os animais foram pesados semanalmente. Após o sacrifício as tíbias foram dissecadas, pesadas e submetidas a ensaio biomecânico de flexão analisando-se carga máxima, deformação e coeficiente de rigidez. Observou-se que no grupo tratado com AINH não houve aumento do peso corpóreo a partir da segunda semana e as tíbias fraturadas foram mais pesadas. Neste grupo o calo ósseo suportou menor carga máxima, apresentando maior deformação e menor coeficiente de rigidez. Nos animais tratados, o osso não fraturado também se mostrou menos rígido. Concluiu-se, nas condições estudadas, que o DS alterou o processo de consolidação e o metabolismo ósseo, levando a retardo na maturação do calo e menor rigidez do osso intacto, respectivamente.
Resumo:
The studied region, named Forquilha and localized in northwestern Central Ceará domain (northern portion of Borborema Province), presents a lithostratigraphic framework constituted by paleoproterozoic metaplutonics, metasedimentary sequences and neoproterozoic granitoids. The metasedimentary rocks of Ceará group occupy most part of the area. This group is subdivided in two distinct units: Canindé and Independência. Canindé unit is represented basically by biotite paragneisses and muscovite paragneisses, with minor metabasic rocks (amphibolite lens). Independência sequence is composed by garnetiferous paragneisses, sillimanite-garnet-quartz-muscovite schists and quartz-muscovite schists, pure or muscovite quartzites and rare marbles. At least three ductile deformation events were recognized in both units of Ceará group, named D1, D2 and D3. The former one is interpreted as related to a low angle tangential tectonics which mass transport is southward. D2 event is marked by the development of close/isoclinal folds with a N-S oriented axis. Refolding patterns generated by F1 and F2 superposition are found in several places. The latest event (D3) corresponds to a transcurrent tectonics, which led to development of mega-folds and several shear zones, under a transpressional regime. The mapped shear zones are Humberto Monte (ZCHM), Poço Cercado (ZCPC) and Forquilha (ZCF). Digital image processing of enhanced Landsat 7-ETM+ satellite images, combined with field data, demonstrate that these penetrative structures are associated with positive and negative geomorphologic patterns, distributed in linear and curvilinear arrangements with tonal banding, corresponding to the ductile fabric and to crests. Diverse color composites were tested and RGB-531 and RGB-752 provided the best results for lineament analysis of the most prominent shear zones. Spatial filtering techniques (3x3 and 5x5 filters) were also used and the application of Prewitt filters generated the best products. The integrated analysis of morphological and textural aspects from filtered images, variation of tonalities related to the distribution of geologic units in color composites and the superposition over a digital elevation model, contributed to a characterization of the structural framework of the study area. Kinematic compatibility of ZCHM, ZCPC, ZCF shear zones, as well as Sobral-Pedro II (ZCSPII) shear zone, situated to the west of the study area, was one of the goal of this work. Two of these shear zones (ZCHM, ZCPC) display sinistral movements, while the others (ZCSPII, ZCF) exhibit dextral kinematics. 40Ar/39Ar ages obtained in this thesis for ZCSPII and ZCPC, associated with other 40Ar/39Ar data of adjacent areas, indicate that all these shear zones are related to Brasiliano orogeny. The trend of the structures, the opposite shear senses and the similar metamorphic conditions are fitted in a model based on the development of conjugate shear zones in an unconfined transpression area. A WNW-ESE bulk shortening direction is infered. The geometry and kinematic of the studied structures suggest that shortening was largely accommodated by lateral extrusion, with only minor amounts of vertical stretch
Resumo:
Until some years ago, weathering geochronology was primarily based on the K-Ar and 40Ar/39Ar dating of supergene minerals. Recent advances in the analysis of supergene goethite by the (U-Th)/He method expanded the number of suitable minerals for such purpose, as well as the time of application for weathering geochronology. This study represents the first systematic approach in Brazil, combining both the 40Ar/39Ar e (U-Th)/He methodologies to improve the knowledge on the weathering and the age of nonfossiliferous sediments. Supported by geologic and geomorphologic correlations, we identified different types of weathering profiles occurring in the interior and coastal areas of northeastern Brazil. These profiles were correlated to main regional geomorphological domains: the Borborema Plateau , the Sertaneja Depression , and the Coastal Cuestas and Plains, and respective planation surfaces, which study is fundamental to understand the landscape evolution of the northern portion of the eastern Borborema Province. The depth and stratigraphic organization of the weathering profiles in each of the geomorphological domains permitted to establish that: (i) the profiles on the highlands that cap the Borborema Surface are deeper (up to 100 m) and can be considered as typical lateritic profiles; (ii) on the lowlands that form the Sertaneja Surface , the weathering profiles are shallow and poorly developed (2-5 m deep); (iii) the profiles along the coastal area are moderately developed (up to 25 m deep), and are characterized by thick saprolites and mottle zones. Aiming to establish the timing of the evolution of northeastern Brazil, we studied 29 weathering profiles representing distinct topographic levels of the Borborema Province, from the highlands to the coast, through the analysis of 248 grains of supergene manganese oxides using laser step-heating 40Ar/39Ar geochronology. Additionally, we applied the (U-Th)/He method in 20 weathering profiles, by dating 171 grains of supergene iron oxides and hydroxides. Geochronological results for 248 grains of manganese oxides analyzed by the 40Ar/39Ar method indicate that the weathering profiles in the study area record the history of weathering from the Oligocene to the Pleistocene, with ages in the order of 31.4 ± 1.0 Ma to 0.8 ± 0.4 Ma. Dating of 171 grains of goethite by the (U-Th)/He method yielded ages ranging from 43.2 ± 4.3 Ma to 0.8 ± 0.1 Ma, suggesting the weathering processes last from the Eocene to the Pleistocene. The precipitation of supergene goethite in this interval confirms the age of the weathering processes identified from the manganese oxides record. 105 goethite grains from 8 different occurrences of the Barreiras Formation were dated by the (U-Th)/He method. Five grains collected from the cement in the Barreiras Formation sandstones, in the Lagoa Salgada and Rio do Fogo coastal cuestas, yielded ages of 17.6 ± 1.8 Ma, 17.3 ± 1.7 Ma, 16.3 ± 1.6 Ma, 16.2 ± 1.6 Ma and 13.6 ± 1.4 Ma. Results of 69 goethite grains from authigenic pisoliths collected in 7 different localities also yielded concordant ages, varying from 17.8 ± 1.8 to 7.5 ± 0.8 Ma. Results obtained from 31 detrital grains are concordant in 3 distinct localities (Lagoa Salgada, Praia da Garças e Ponta Grossa); they vary in the range of 43.2 ± 4.3 to 21.6 ± 2.2 Ma, and indicate that the maximum age for the Barreiras Formation deposition is around 22 Ma. 40Ar/39Ar results for 15 manganese oxides grains associated with the Barreiras Formation weathering profiles, in 3 different localities, vary from 13.1 ± 0.9 to 7.7 ± 0.4 Ma, in the same range of ages obtained by the (U-Th)/He method. The systematic application of the 40Ar/39Ar and (U-Th)/He methods, respectively for manganese oxides and goethites, show that the Barreiras Formation sediments were already deposited since ca. 17 Ma, and that the weathering processes were active until ca. 7 Ma ago. The ages obtained from manganese oxides collected in the Cenozoic basalts (Macau Formation) also reveal a weathering history between 19 and 7 Ma, pointing to hot and humid conditions during most of the Miocene. 40Ar/39Ar ages yielded by manganese oxides associated with the Serra do Martins Formation vary from 14.1 ± 0.4 to 10.5 ± 0.3 Ma. On the other hand, (U-Th)/He ages from iron oxides/hydroxides collected in the Serra do Martins Formation mesas vary from 20.0 ± 2.0 to 5.5 ± 0.6 Ma, indicating that those sediments are older than 20 Ma. 40Ar/39Ar and (U-Th)/He results produced in this study are in agreement with paleoclimatic interpretations based on stable isotopes and clay index values measured in the Atlantic Ocean sediments, validating the use of weathering geochronology to investigate paleoclimatic variations. The direct dating of the Barreiras Formation permitted, for the first time, confident inferences on the age of the brittle deformation recorded by this sedimentary unit in the Rio Grande do Norte and Ceará states. The first event, syn-deposition, occurred during the early Miocene; an younger event, related to the post-depositional deformation of the Barreiras Formation, is associated with tectonic activity from the very early Miocene to the Holocene. In agreement with data from other areas, results obtained in this study reveal that the depth and complexity of the weathering profiles reflect the time of exposition of such areas to the weathering agents close to the surface. However, there is no clear relationship between ages vs. altitude. The depth and the stratigraphic organization of weathering profiles in northeastern Brazil, contrary to the southeastern Brazil pattern, do not vary toward the coast. In our study area, field observations reveal the presence of ancient, thick and complex lateritic profiles preserved in the sedimentary mesas on the Borborema Plateau, as younger, narrow and incipient ones occur in the dissected areas. Geochronological results obtained for these profiles yielded older ages on the high altitudes, and younger ages in the lowlands, suggesting the scarp retreatment is the most reliable model to explain the regional landscape evolution. However, in the coastal lowlands, the relatively older ages obtained indicate that more complexes processes were involved in the modeling of the local relief
Resumo:
This thesis deals with the tectonic-stratigraphic evolution of the Transitional Sequence in the Sergipe Sub-basin (the southern segment of the Sergipe-Alagoas Basin, Northeast Brazil), deposited in the time interval of the upper Alagoas/Aptian stage. Sequence boundaries and higher order internal sequences were identified, as well as the structures that affect or control its deposition. This integrated approach aimed to characterize the geodynamic setting and processes active during deposition of the Transitional Sequence, and its relations with the evolutionary tectonic stages recognized in the East Brazilian Margin basins. This subject addresses more general questions discussed in the literature, regarding the evolution from the Rift to the Drift stages, the expression and significance of the breakup unconformity, the relationships between sedimentation and tectonics at extensional settings, as well as the control on subsidence processes during this time interval. The tectonic-stratigraphic analysis of the Transitional Sequence was based on seismic sections and well logs, distributed along the Sergipe Sub-basin (SBSE). Geoseismic sections and seismic facies analysis, stratigraphic profiles and sections, were compiled through the main structural blocks of this sub-basin. These products support the depositional and tectonic-stratigraphic evolutionary models built for this sequence. The structural analysis highlighted similarities in deformation styles and kinematics during deposition of the Rift and Transitional sequences, pointing to continuing lithospheric extensional processes along a NW trend (X strain axis) until the end of deposition of the latter sequence was finished by the end of late Aptian. The late stage of extension/rifting was marked by (i) continuous (or as pulses) fault activity along the basin, controling subsidence and creation of depositional space, thereby characterizing upper crustal thinning and (ii) sagstyle deposition of the Transitional Sequence at a larger scale, reflecting the ductile stretching and thinnning of lower and sub crustal layers combined with an increasing importance of the thermal subsidence regime. Besides the late increments of rift tectonics, the Transitional Sequence is also affected by reactivation of the border faults of SBSE, during and after deposition of the Riachuelo Formation (lower section of the Transgressive Marine Sequence, of Albian age). It is possible that this reactivation reflects (through stress propagation along the newlycreated continental margin) the rifting processes still active further north, between the Alagoas Sub-basin and the Pernambuco-Paraíba Basin. The evaporitic beds of the Transitional Sequence contributed to the development of post-rift structures related to halokinesis and the continental margin collapse, affecting strata of the overlying marine sequences during the Middle Albian to the Maastrichtian, or even the Paleogene time interval. The stratigraphic analysis evidenced 5 depositional sequences of higher order, whose vertical succession indicates an upward increase of the base level, marked by deposition of continental siliciclastic systems overlain by lagunar-evaporitic and restricted marine systems, indicating that the Transitional Sequence was deposited during relative increase of the eustatic sea level. At a 2nd order cycle, the Transitional Sequence may represent the initial deposition of a Transgressive Systems Tract, whose passage to a Marine Transgressive Sequence would also be marked by the drowning of the depositional systems. At a 3rd order cycle, the sequence boundary corresponds to a local unconformity that laterally grades to a widespread correlative conformity. This boundary surface corresponds to a breakup unconformity , being equivalent to the Pre-Albian Unconformity at the SBSE and contrasting with the outstanding Pre-upper Alagoas Unconformity at the base of the Transitional Sequence; the latter is alternatively referred, in the literature, as the breakup unconformity. This Thesis supports the Pre-Albian Unconformity as marker of a major change in the (Rift-Drift) depositional and tectonic setting at SBSE, with equivalent but also diachronous boundary surfaces in other basins of the Atlantic margin. The Pre-upper Alagoas Unconformity developed due to astenosphere uplift (heating under high lithospheric extension rates) and post-dates the last major fault pulse and subsequent extensive block erosion. Later on, the number and net slip of active faults significantly decrease. At deep to ultra deep water basin segments, seaward-dipping reflectors (SDRs) are unconformably overlain by the seismic horizons correlated to the Transitional Sequence. The SDRs volcanic rocks overly (at least in part) continental crust and are tentatively ascribed to melting by adiabatic decompression of the rising astenospheric mantle. Even though being a major feature of SBSE (and possibly of other basins), the Pre-upper Alagoas Unconformity do not correspond to the end of lithospheric extension processes and beginning of seafloor spreading, as shown by the crustal-scale extensional structures that post-date the Transitional Sequence. Based on this whole context, deposition of the Transitional Sequence is better placed at a late interval of the Rift Stage, with the advance of an epicontinental sea over a crustal segment still undergoing extension. Along this segment, sedimentation was controled by a combination of thermal and mechanical subsidence. In continuation, the creation of oceanic lithosphere led to a decline in the mechanical subsidence component, extension was transferred to the mesoceanic ridge and the newly-formed continental margin (and the corresponding Marine Sequence) began to be controlled exclusively by the thermal subsidence component. Classical concepts, multidisciplinary data and new architectural and evolutionary crustal models can be reconciled and better understood under these lines
Resumo:
This thesis aims to advance in the geological knowledge of the region comprising the Piancó-Alto Brígida (TPAB) and Alto pajeú (TAP) terranes, in the Transversal Zone Domain (Borborema Province, NE Brazil), with the main objective of understanding the geodynamic evolution and the structural framework of these units. To reach this objective, and besides field work and interpretation of traditional aerial photographs, other tools were employed like of remote sensing products (Landsat 7 ETM+, aeroradiometrics, aeromagnetics and topographical images), lithogeochemical (whole rock) analyses and geochronological dating (U-Pb in zircon), besides integration with literature data. In the area, several precambrian geological units outcrop, represented in the TAP by the paleoproterozoic Serra Talhada and Afogados da Ingazeira complexes, Riacho Gravatá Complex (metavolcano-sedimentary sequence of Stenian-Tonian age) and Cariris Velhos orthogneisses (of Tonian age). The TPAB comprises the Santana do Garrote (lower unit) and Serra do Olho d'Água (upper unit) formations of the Cachoeirinha Group (Neoproterozoic III), besides the Piancó orthogneisses and Bom Jesus paragneisses; the latter correspond to an older (basement ?) block and a possible high grade equivalent of the Cachoeirinha Group (or Seridó Group ?), respectively. Several Brasiliano-age plutons occur in both terranes.The aeromagnetic data show the continuity, at depth, of the main shear zones mapped in the region. The Patos, Pernambuco, Boqueirão dos Cochos, Serra do Caboclo, Afogados da Ingazeira/Jabitacá and Congo-Cruzeiro do Nordeste shear zones reach depths greater than to 6-16 km. The aeromagnetic signature of other shear zones, like the Juru one, suggests that these structures correspond to shallower crustal features. The satellite images (Landsat 7 ETM+) and aerogamaspectrometric images discriminate different geological units, contributing to the mapping of the structural framework of the region. The Serra do Caboclo Shear Zone was characterized as the boundary/suture between the TPAB and TAP. This structure is an outstanding, pervasive feature that separates contrasting geological units, such as the Neoproterozoic III Cachoeirinha Group in the TPAB and the Riacho Gravatá Complex and the Cariris Velhos metaplutonics, of Stenian-Tonian age, in the TAP. Occupying different blocks, these units are not found in authoctonous relations, like unconformities and intrusive contacts. Concerning the Cariris Velhos (ca. 1,0 Ga old) event is recorded by radiometric ages of the Riacho Gravatá Complex metavolcanics and intrusive augen and orthogneisses, all of them displaying geochemical affinities of arc or collisional settings. A structural signature of this event was not recorded in the region, possibly due to its low grade/low strain style, obliterated by the overprinting of younger, higher grade/high strain Brasiliano-age fabrics.The first tectonic event (D1) observed in the Cariris Velhos lithotypes presents contractional kinematics with transport to the NW. Neoproterozoic III geochronologic dates, obtained in late-D1 granitoids, imply a Brasiliano age (ca. 610-600 Ma) for this deformation event. The second tectonic event (D2) characterized in the region corresponds to the Brasiliano transcurrent kinematics of the outstanding shear zones and associated granitoid plutons. The geochronological (U-Pb in zircon) data obtained during this thesis also confirms the occurrence of the Cariris Velhos magmatic suite in the TAP, as well as the Neoproterozoic III age to the Cachoeirinha Group in the TPAB. The TAP (Riacho Gravatá Complex, augen and orthogneisses) is interpreted as a continental arc possibly accreted to a microcontinent during the Cariris Velhos (Stenian-Tonian) event. Later on, this terrane collided with the TPAB at the beginning of the Brasiliano orogeny (D1 contractional deformation), and both domins were reworked by the transcurrent shear deformation of the D2 event
Resumo:
Atualmente, diante das técnicas atuais, a manometria tem sido relegada a plano secundário durante a cateterização cardíaca. No entanto, ainda fornece importantes informações para identificação e avaliação das doenças cardiovasculares. Os dados coletados durante os exames possibilitam a obtenção de variáveis quantitativas e qualitativas, as quais podem ser comparadas aos padrões normais. Os sistemas manométricos são compostos por transdutor, amplificador e registrador, que, em conjunto, devem espelhar com fidelidade a morfologia e os valores das variáveis analisadas. Para atingir esse objetivo, é necessário desempenho adequado de todos os componentes. Se uma determinada informação é de extrema relevância, o operador deve gastar tempo suficiente para obtê-la de maneira inequívoca. Assim, o operador deve estar familiarizado com os sistemas manométricos e com as fontes de erro relacionadas com as técnicas de registro, cateteres, conectores e fluidos. Com os fundamentos analisados neste manuscrito, salientamos que deve ser dispensada atenção às ondas de pressão usadas nas interpretações da fisiopatologia das doenças cardiovasculares.
Resumo:
The study of Brazilian sedimentary basins concentrates on their rift phase, whereas the Post-rift phase has been considered a tectonic quiescent period. The post-rift sequence of the Potiguar Basin, in the far northeastern Brazil, was once considered little deformed, however several studies have shown how that it was affected by major fault systems. The purpose of this thesis is to characterize the post-rift tectonic. The specific objectives are: to characterize the Neogene and Quaternary sedimentary units that outcrop of the Potiguar Basin; to show how the NW-SEtrending Afonso Bezerra Faults System deformed outcrop rocks in the Basin; to describe soft-sediment deformation in gravels of the Quaternary Alluvial Deposits from Açu River. Facies analyses, grain-size studies, luminescence dating, remote sensing, structural mapping, shallow geophysics (georadar), paleostress and petrography were carried out. The structural mapping and the georadar sections indicated that the Carnaubais and Afonso Bezerra fault systems formed fractures, silicified and non-silicified faults or deformation bands, affecting mainly the Açu, Jandaíra and Barreiras formations. The petrographic data indicate that the strong silicification resulted in a sealant character of the faults. Paleostress analysis indicates that two stress fields affected the Basin: the first presented N-S-trending compression, occurred from the Neocretaceous to the Miocene; the second stress field presents E-W-trending compression, acts from the Miocene to the present. It was verified once the Afonso Bezerra System Faults was reactivated in periods post-Campanian and affects all post-rift lithostratigraphic units of Potiguar Basin, including Quaternary sedimentary covers. The study about soft-sediment deformation structures indicates that they are similar in morphology and size to modern examples of seismically-induced deformation strutures in coarse sediments. TL and OSL ages indicate that sediment deposition and associated soft-sediment deformation occurred at least six times from ~352 Ka to ~9 Ka. Finally these studies demonstrate how recent is tectonics in the Basin Potiguar
Resumo:
Numerous studies have indicated that the Potiguar Basin is affected by Cenozoic tectonics. The reactivation of Cretaceous fault systems affect the post-rift units, witch include Neogene and overlying Quaternary sediments. In this context, the objectives of this thesis are the followings: (1) to characterize the effects of post-rift tectonics in the morphology of Apodi Mossoró-river valley located in the central portion of the Potiguar, (2) to characterize the drainage of the Apodi Mossoró river valley and investigate the behavior of their channels across active faults, and (3) to propose a geologic-geomorphological evolutionary model for the study area. This study used a geological and geomorphological mapping of the central part of the basin, with emphasis on the Quaternary record, luminescence dating of sediments, and geoelectric profiles of the area. The results reveal by maps of structural lineaments and drainage channels of the rivers form valleys that are affected by faults and folds. In Apodi-Mossoró valley, anomalies of channel morphology are associated with the deformation of the post-rift basin. These anomalies show the reactivation of major fault systems in the Potiguar Basin in Cenozoic. On a regional scale, can be seen through the vertical electric profiles that the Cenozoic tectonics is responsible for the elevation of a macro dome NE-SE-trending 70-km long and 50km wide and up to 270 above sea level. In this sector, the vertical electric profiles data show that the contact between the Cretaceous and Neogene rise more than 100m. This Is an important feature of inversion data obtained in this work showed that the deposits that cover the macro dome (Serra do Mel) have ages of 119 ka to 43 ka. In the river valley and surrounding areas Apodi-Mossoró ages vary between 319 ka and 2.7 ka. From these data it was possible to establish the correct geochronological posiconamento paleodepósitos of distinguishing them from the fluvial deposits of the Neogene (Barreiras Formation)
Resumo:
The monitoring of Earth dam makes use of visual inspection and instrumentation to identify and characterize the deterioration that compromises the security of earth dams and associated structures. The visual inspection is subjective and can lead to misinterpretation or omission of important information and, some problems are detected too late. The instrumentation are efficient but certain technical or operational issues can cause restrictions. Thereby, visual inspections and instrumentation can lead to a lack of information. Geophysics offers consolidated, low-cost methods that are non-invasive, non-destructive and low cost. They have a strong potential and can be used assisting instrumentation. In the case that a visual inspection and strumentation does not provide all the necessary information, geophysical methods would provide more complete and relevant information. In order to test these theories, geophysical acquisitions were performed using Georadar (GPR), Electric resistivity, Seismic refraction, and Refraction Microtremor (ReMi) on the dike of the dam in Sant Llorenç de Montgai, located in the province of Lleida, 145 km from Barcelona, Catalonia. The results confirmed that the geophysical methods used each responded satisfactorily to the conditions of the earth dike, the anomalies present and the geological features found, such as alluvium and carbonate and evaporite rocks. It has also been confirmed that these methods, when used in an integrated manner, are able to reduce the ambiguities in individual interpretations. They facilitate improved imaging of the interior dikes and of major geological features, thus inspecting the massif and its foundation. Consequently, the results obtained in this study demonstrated that these geophysical methods are sufficiently effective for inspecting earth dams and they are an important tool in the instrumentation and visual inspection of the security of the dams
Resumo:
The studied area is geologically located in the Northern Domain of the Borborema Province (Northeast Brazil), limited to the south by the Patos shear zone. Terranes of the Jaguaribeano system are dominant, flanked by the Piranhas (E and S sides) and Central Ceará (NE side) terranes. Its basement comprises gneiss -migmatite terrains of Paleoproterozoic to Archean age (2.6 to 1.9 Ga old), overprinted by neoproterozoic to cambrian tectonotherma l events. Narrow supracrustal belts ( schist belts) display a 1.6 to 1.8 Ga age, as shown by whole - rock Rb-Sr and zircon U-Pb and Pb/Pb dates in acid metavolcanics which dominate in the lower section of these sequences, and in coeval metaplutonics (granitic augen gneisses). From the stratigraphic point of view, three Staterian belts are recognized: 1. Orós Belt - made up by the Orós Group, subdivided in the Santarém (predominantly pure to impure quartzites, micaschists and metacarbonates) and Campo Alegre (metandesites, metabasalts, metarhyolites and metarhyodacites, interlayered with metatuffs and metasediments) formations, and by the Serra do Deserto Magmatic Suite (granitic augen gneisses). 2. Jaguaribe Belt - its lithostratigrahic-lithodemic framework is similar to the one of the Orós Belt, however with a greater expression of the volcano -plutonic components (Campo Alegre Formation and Serra do Deserto Magmatic Suite). The Peixe Gordo Sequence, separately described, is also related to this belt and contain s metasedimentary, metavolcanic (with subordinated volcanoclastics) and metaplutonic units. The first one correlated to the Orós Group and the latter the Serra do Deserto Magmatic Suite. 3. Western Potiguar Belt - represented by the Serra de São José Gro up, subdivided in the Catolezinho (biotite -amphibole gneisses with intercalations of metacarbonates, calcsilicate rocks, amphibolites and quartzite beds to the top) and Minhuins (quartzites, micaschists, metaconglomerates, calcsilicate rocks, acid to the b asic metavolcanics and metatuffs) formations. Its late Paleoproterozoic (Staterian) age was established by a Pb/Pb date on zircons from a granitic orthogneiss of the Catolezinho Formation. The petrographic characteristics and sedimentary structures of the Santarém Formation of the Orós Group point to deltaic to shallow marine depositional systems, overlain by deep water deposits (turbidites). The geodynamic setting of this region encompassed a large depositional basin, probably extending to the east of the Portalegre shear zone and west of the Senador Pompeu shear zone, with possible equivalents in the Jucurutu Formation of the Seridó Belt and in the Ceará Group of central Ceará. The Arneiróz Belt, west Ceará, displays some stratigraphic features and granito ids geochemically akin to the ones of the Orós Belt. The evolutionary setting started with an extensional phase which was more active in the eastern part of this domain (Western Potiguar and part of the Jaguaribe belts), where the rudite and psamite sedime ntation relates to a fluviatile rift environment which evolved to a prograding deltaic system to the west (Orós Group). The basaltic andesitic and rhyolitic volcanics were associated to this extensional phase. During this magmatic event, acid magmas also crystallized at plutonic depths. The Orós Group illustrates the environmental conditions in the western part of this domain. Later on, after a large time gap (1.6 to 1.1 Ga), the region was subjected to an extensional deformational episode marked by 900 Ma old (Sm-Nd data) basic rocks, possibly in connection with the deposition of the Cachoeirinha Group south of the Patos shear zone. In the 800 to 500 Ma age interval, the region was affected by important deformational and metamorphic events coupled with in trusion of granitic rocks of variable size (dykes to batholiths), related to the Brasiliano/Pan -African geotectonic cycle. These events produced structural blocks which differentiate, one from the other, according to the importance of anatectic mobilizatio n, proportion of high-grade supracrustals and the amount of neoproterozoic -cambrian granitoid intrusions. On this basis, a large portion of the Jaguaretama Block/Terrane is relatively well preserved from this late overprint. The border belts of the Jagua retama Block (Western Potiguar and Arneiroz) display kyanite-bearing (medium pressure) mineral associations, while in the inner part of the block there is a north-south metamorphic zoning marked by staurolite or sillimanite peak metamorphic conditions. Regarding the deformations of the Staterian supracrustal rocks, second and third phases were the most important, diagnosed as having developed in a progressive tectonic process. In the general, more vigorous conditions of PT are related to the interval tardi - phase 2 early-phase 3, whose radiometric ages and regional structuring indicators places it in the Brasiliano/Pan-African Cycle. In the Staterian geodynamic setting of Brazilian Platform , these sequences are correlated to the lower Espinhaço Supergroup (p.ex., Rio dos Remédios and Paraguaçu groups, a paleproterozoic rift system in the São Francisco Craton), the Araí and Serra da Mesa groups (north of Goiás, in the so -called Goiás Central Massif), and the Uatumã Group (in the Amazonian Craton). Granitic ( augen gneisses) plutonics are also known from these areas, as for example the A-type granites intrusive in the Araí and Serra da Mesa groups, dated at 1.77 Ga. Gravimetric and geological data place the limits of the Jaguaribeano System (terranes) along the Senador Pompeu Shear Zone (western border) and the Portalegre- Farias Brito shear zone (eastern and southern). However, the same data area not conclusive as regards the interpretation of those structures as suture of the terrane docking process. The main features of those shear zones and of involved lothological associations, appear to favour an intracontinental transpressional -transcurrent regime, during Neoproterozoic-Cambrian times, marking discontinuities along which different crustal blocks were laterally dispersed. Inside of this orogenic system and according to the magnetic data (total field map), the most important terrane boundary appears to be the Jaguaribe shear zone. The geochronological data, on some tectonostratigraphic associations (partly represented by the Ceará and Jucurutu groups), still at a preliminary level, besides the lack of granitic zonation and other petrotectonic criteria, do not allow to propose tectonic terrane assembly diagrams for the studied area
Resumo:
Baixo Vermelho area, situated on the northern portion of Umbuzeiro Graben (onshore Potiguar Basin), represents a typical example of a rift basin, characterized, in subsurface, by the sedimentary rift sequence, correlated to Pendência Formation (Valanginian-Barremian), and by the Carnaubais fault system. In this context, two main goals, the stratigraphic and the structural analysis, had guided the research. For this purpose, it was used the 3D seismic volume and eight wells located in the study area and adjacencies. The stratigraphic analysis of the Valanginian-Barremian interval was carried through in two distinct phases, 1D and 2D, in which the basic concepts of the sequence stratigraphy had been adapted. In these phases, the individual analysis of each well and the correlation between them, allowed to recognize the main lithofacies, to interpret the effective depositional systems and to identify the genetic units and key-surfaces of chronostratigraphic character. The analyzed lithofacies are represented predominantly by conglomerates, sandstones, siltites and shales, with carbonate rocks and marls occurring subordinately. According to these lithofacies associations, it is possible to interpret the following depositional systems: alluvial fan, fluvio-deltaic and lacustrine depositional systems. The alluvial fan system is mainly composed by conglomerates deposits, which had developed, preferentially in the south portion of the area, being directly associated to Carnaubais fault system. The fluvial-deltaic system, in turn, was mainly developed in the northwest portion of the area, at the flexural edge, being characterized by coarse sandstones with shales and siltites intercalated. On the other hand, the lacustrine system, the most dominant one in the study area, is formed mainly by shales that could occur intercalated with thin layers of fine to very fine sandstones, interpreted as turbidite deposits. The recognized sequence stratigraphy units in the wells are represented by parasequence sets, systems tracts and depositional sequences. The parasequence sets, which are progradational or retrogradational, had been grouped and related to the systems tracts. The predominance of the progradation parasequence sets (general trend with coarsening-upward) characterizes the Regressive Systems Tract, while the occurrence, more frequently, of the retrogradation parasequence sets (general trend with finning-upward) represents the Transgressive System Tract. In the seismic stratigraphic analysis, the lithofacies described in the wells had been related to chaotic, progradational and parallel/subparallel seismic facies, which are associated, frequently, to the alluvial fans, fluvial-deltaic and lacustrine depositional systems, respectively. In this analysis, it was possible to recognize fifteen seismic horizons that correspond to sequence boundaries and to maximum flooding surfaces, which separates Transgressive to Regressive systems tracts. The recognition of transgressive-regressive cycles allowed to identify nine, possibly, 3a order deposicional sequences, related to the tectonic-sedimentary cycles. The structural analysis, in turn, was done at Baixo Vermelho seismic volume, which shows, clearly, the structural complexity printed in the area, mainly related to Carnaubais fault system, acting as an important fault system of the rift edge. This fault system is characterized by a main arrangement of normal faults with trend NE-SO, where Carnaubais Fault represents the maximum expression of these lineations. Carnaubais Fault corresponds to a fault with typically listric geometry, with general trend N70°E, dipping to northwest. It is observed, throughout all the seismic volume, with variations in its surface, which had conditioned, in its evolutive stages, the formation of innumerable structural features that normally are identified in Pendencia Formation. In this unit, part of these features is related to the formation of longitudinal foldings (rollover structures and distentional folding associated), originated by the displacement of the main fault plan, propitiating variations in geometry and thickness of the adjacent layers, which had been deposited at the same time. Other structural features are related to the secondary faultings, which could be synthetic or antithetic to Carnaubais Fault. In a general way, these faults have limited lateral continuity, with listric planar format and, apparently, they play the role of the accomodation of the distentional deformation printed in the area. Thus, the interaction between the stratigraphic and structural analysis, based on an excellent quality of the used data, allowed to get one better agreement on the tectonicsedimentary evolution of the Valanginian-Barremian interval (Pendência Formation) in the studied area
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
This study focuses on the potential of several techniques used to identify depositional geometries and paleogeographical investigation on the SW border of the Potiguar Basin. Three areas were selected for an integrated geological, geophysical and geochemistry study. The main used techniques were facies analysis, remote sensing,ground penetrating radar (GPR) and gamma-ray in outcrops, as well as petrographic microscope observations and the using of scanning eletronic microscopic (SEM), and Carbon and Oxygen Isotopic study in the carbonate tufa. These methodological approaches were very efficient in the facies analysis of 2D geometries. The GPR profiles carried out in Quixeré identified important geological reflectors which allowed to the identification of depositional geometries of tufa. However, GPR profiles were not able to identify geological reflectors in the Apodi and Olho d´Água da Bica outcrops. Gammaray profiles also presented good results, which justify their use in 1D and 2D geometric analysis. Carbon and Oxygen Isotopic analyses were also used to investigate paleoenvironmental setting of tufa deposits. It is important to remark the excellent resultsof GRP using in the identification of deposition al geometries of tufa and their contact relationships with the underlying rocks. Field analysis of faults indicate a vertical sigma-1 orientation which was associated to normal faults
Resumo:
The Brasiliano Cycle in the Seridó Belt (NE Brazil) is regarded mostly as a crustal reworking event, characterized by transcurrent or transpressional shear zones which operated under high temperature and low pressure conditions. In the eastern domain of this belt- the so-called São José de Campestre Massif (SJCM), a transtensional deformation regime is evidenced by extensional components or structures associated to the strikeslip shear zones. The emplacement of the Neoproterozoic Brasiliano granitoids is strongly controled by these discontinuities. Located in the southern border of the SJCM, the Remígio-Pocinhos shear zone (RPSZ) displays, in its northern half, top to the SW extensional movement which progressively grade, towards its southern half, to a dextral strike-slip kinematics, defining a negative semi-flower structure. This shear zone is overprinted upon allocthonous metasediments of the Seridó Group and an older gneiss-migmatite complex, both of which containing metamorphic parageneses from high amphibolite to granulite facies (the latter restricted to the strike-slip zone), defining the peak conditions of deformation. Several granitoid plutons are found along this structure, emplaced coeval with the shearing event. Individually, such bodies do not exceed 30 km2 in outcropping area and are essentially parallel to the trend of the shear zone. Petrographic, textural and geochemical data allow to recognize five different granitoid suites along the RPSZ: porphyritic granites (Serra da Boa Vista and Jandaíra), alkaline granites (Serra do Algodão and Serra do Boqueirão) and medium to coarse-grained granites (Olivedos) as major plutons, while microgranite and aluminous leucogranite sheets occur as minor intrusions. The porphyritic granites are surrounded by metasediments and present sigmoidal or en cornue shapes parallel to the trend of the RPSZ, corroborating the dextral kinematics. Basic to intermediate igneous enclaves are commonly associated to these bodies, frequently displaying mingling textures with the host granitoids. Compositionally these plutons are made up by titanite-biotite monzogranites bearing amphibole and magnetite; they are peraluminous and show affinities to the monzonitic, subalkaline series. Peraluminous, ilmenite-bearing biotite monzogranites and titanite-biotite monzogranites correspond, respectivally, to the Olivedos pluton and the microgranites. The Olivedos body is hosted by metasediments, while the microgranites intrude the gneiss-migmatite complex. Being highly evolved rocks, samples from these granites plot in the crustal melt fields in discrimination diagrams. Nevertheless, their subtle alignment also looks consistent with a monzonitic, subalkaline affinity. These chemical parameters make them closer to the I-type granites. Alkaline, clearly syntectonic granites are also recognized along the RPSZ. The Serra do Algodão and Serra do Boqueirão bodies display elongated shapes parallel to the mylonite belt which runs between the northern, extensional domain and the southern strike-slip zone. The Serra do Algodão pluton shows a characteristic isoclinal fold shape structure. Compositionally they encompass aegirine-augite alkali-feldspar granites and quartz-bearing alkaline syenite bearing garnet (andradite) and magnetite plus ilmenite as opaque phases. These rocks vary from meta to peraluminous, being correlated to the A-type granites. Aluminous leucogranites bearing biotite + muscovite ± sillimanite ± garnet (S-type granites) are frequent but not volumetrically important along the RPSZ. These sheet-like bodies may be folded or boudinaged, representing partial melts extracted from the metasediments during the shear zone development. Whole-rock Rb-Sr isotope studies point to a minimum 55410 Ma age for the crystalization of the porphyritic granites. The alkaline granites and the Olivedos granite produced ca. 530 Ma isochrons which look too young; such values probably represent the closure of the Rb-Sr radiometric clock after crystallization and deformation of the plutons, at least 575 Ma ago (Souza et al. 1998). The porphyritic and the alkaline granites crystallized under high oxygen fugacity conditions, as shown by the presence of both magnetite and hematite in these rocks. The presence of ilmenite in the Olivedos pluton suggests less oxidizing conditions. Amphibole and amphibole-plagioclase thermobarometers point to minimum conditions, around 750°C and 6 Kbars, for the crystallization of the porphyritic granites. The zirconium geothermometer indicates higher temperatures, in the order of 800°C, for the porphyritic granites, and 780°C for the Olivedos pluton. Such values agree with the thermobarometric data optained for the country rocks (5,7 Kbar and 765°C; Souza et al. 1998). The geochemical and isotope data set point to a lower crustal source for the porphyritic and the alkaline granites. Granulite facies quartz diorite to tonalite gneisses, belonging or akin to the gneiss-migmatite complex, probably dominate in the source regions. In the case of the alkaline rocks, subordinate contributions of mantle material may be present either as a mixing magma or as a previously added component to the source region. Tonalite to granodiorite gneisses, with some metasedimentary contribution, may be envisaged for the Olivedos granite. The diversity of granitoid rocks along the RPSZ is explained by its lithospheric dimension, allowing magma extraction at different levels, from the middle to lower crust down to the mantle. The presence of basic to intermediate enclaves, associated to the porphyritic granites, confirm the participation of mantle components in the magma extraction system along the RPSZ. This mega-structure is part of the network of Brasiliano-age shear zones, activated by continental collision and terrane welding processes at the end of the Neoproterozoic